Documentation Verification Report

Pi

📁 Source: Mathlib/RingTheory/Smooth/Pi.lean

Statistics

MetricCount
Definitions0
TheoremsinstForallOfFinite, of_pi, pi_iff
3
Total3

Algebra.FormallySmooth

Theorems

NameKindAssumesProvesValidatesDepends On
instForallOfFinite 📖mathematicalAlgebra.FormallySmoothPi.commRing
Pi.algebra
CommRing.toCommSemiring
Ring.toSemiring
pi_iff
of_pi 📖mathematicalAlgebra.FormallySmoothof_split
RingHom.instRingHomClass
Ideal.instIsTwoSided_1
RingHomCompTriple.ids
RingHom.map_one
sub_eq_zero
map_sub
RingHomClass.toAddMonoidHomClass
Ideal.Quotient.eq_zero_iff_mem
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Pi.single_eq_same
sub_self
IsScalarTower.left
pow_two
mul_sub
sub_mul
mul_one
one_mul
zero_sub
neg_sub
NegMemClass.neg_mem
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClassIdeal
Ideal.pow_mem_pow
Pi.single_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
AlgHom.ext
pi_iff 📖mathematicalAlgebra.FormallySmooth
Pi.commRing
Pi.algebra
CommRing.toCommSemiring
Ring.toSemiring
nonempty_fintype
of_pi
of_comp_surjective
Ideal.instIsTwoSided_1
RingHom.instRingHomClass
Ideal.pow_mem_pow
Ideal.mk_ker
CompleteOrthogonalIdempotents.lift_of_isNilpotent_ker
CompleteOrthogonalIdempotents.map
CompleteOrthogonalIdempotents.single
Ideal.Quotient.mk_surjective
CompleteOrthogonalIdempotents.bijective_pi
Equiv.left_inv
Equiv.right_inv
MonoidHom.map_mul'
RingHom.map_add'
AlgHom.commutes'
Ideal.Quotient.isScalarTower
IsScalarTower.right
Ideal.le_comap_map
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.instIsTwoSidedMapRingHomOfRingHomSurjective
Ideal.Quotient.instRingHomSurjectiveQuotientMk
Ideal.mem_span_singleton
Set.image_singleton
Ideal.map_span
mul_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_sub
mul_one
IsIdempotentElem.eq
OrthogonalIdempotents.idem
CompleteOrthogonalIdempotents.toOrthogonalIdempotents
sub_self
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MulZeroClass.zero_mul
RingHomCompTriple.ids
RingHom.map_one
Ideal.Quotient.mk_eq_mk_iff_sub_mem
dvd_refl
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
Pi.single_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
comp_surjective
Ideal.map_pow
Ideal.map_bot
AlgHom.congr_fun
AlgHom.ext
AlgHom.toLinearMap_apply
LinearMap.pi_ext'
LinearMap.ext
AlgEquiv.injective
Pi.single_eq_same
Ideal.Quotient.eq_zero_iff_mem
sub_mul
one_mul
OrthogonalIdempotents.ortho
sub_zero
Pi.single_eq_of_ne
MulZeroClass.mul_zero
AlgEquiv.apply_symm_apply
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
sub_eq_zero
mul_comm

---

← Back to Index