π Source: Mathlib/RingTheory/Spectrum/Prime/Chevalley.lean
isConstructible_comap_C
isConstructible_comap_image
isConstructible_range_comap
isOpenMap_comap_algebraMap_tensorProduct_of_field
isOpenMap_comap_of_hasGoingDown_of_finitePresentation
Topology.IsConstructible
PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commSemiring
zariskiTopology
Set.image
comap
Polynomial.C
exists_constructibleSetData_iff
IsScalarTower.right
ChevalleyThm.chevalley_polynomialC
Submodule.mem_top
ConstructibleSetData.isConstructible_toSet
RingHom.FinitePresentation.polynomial_induction
RingHom.instRingHomClass
Topology.IsConstructible.image_of_isClosedEmbedding
isClosedEmbedding_comap_of_surjective
range_comap_of_surjective
isRetrocompact_zeroLocus_compl_of_fg
Set.image_congr
Set.image_comp
Set.range
Topology.IsConstructible.univ
Set.image_univ
IsOpenMap
TensorProduct
Semifield.toCommSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Algebra.TensorProduct.instCommSemiring
algebraMap
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
exists_fg_and_mem_baseChange
Algebra.FinitePresentation.of_finiteType
IsSimpleModule.instIsNoetherian
instIsSimpleModule
Subalgebra.fg_top
Set.ext
isPrime
mem_image_comap_basicOpen
not_iff_not
IsScalarTower.to_smulCommClass
TensorProduct.isScalarTower_left
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
Algebra.TensorProduct.ext
TensorProduct.isScalarTower
TensorProduct.smulCommClass_left
IsScalarTower.to_smulCommClass'
Algebra.ext_id
AlgHom.ext
AlgHom.restrictScalars.congr_simp
Algebra.TensorProduct.map_comp_includeLeft
Algebra.TensorProduct.cancelBaseChange_tmul
one_smul
Algebra.TensorProduct.cancelBaseChange_symm_tmul
Ideal.ResidueField.algHom_ext
EquivLike.toEmbeddingLike
Module.Flat.lTensor_preserves_injective_linearMap
Module.FaithfullyFlat.toFlat
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
Subtype.val_injective
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Algebra.HasGoingDown.of_flat
Module.Flat.baseChange
Module.Flat.of_free
Algebra.FinitePresentation.baseChange
TopologicalSpace.Opens.isOpen
eq_biUnion_of_isOpen
Set.image_iUnionβ
isOpen_iUnion
TopologicalSpace.IsTopologicalBasis.isOpenMap_iff
isBasis_basic_opens
isOpen_of_stableUnderGeneralization_of_isConstructible
StableUnderGeneralization.image
Algebra.HasGoingDown.iff_generalizingMap_primeSpectrumComap
IsOpen.stableUnderGeneralization
TopologicalSpace.Opens.is_open'
RingHom.finitePresentation_algebraMap
isConstructible_basicOpen
---
β Back to Index