Documentation Verification Report

Chevalley

πŸ“ Source: Mathlib/RingTheory/Spectrum/Prime/Chevalley.lean

Statistics

MetricCount
Definitions0
TheoremsisConstructible_comap_C, isConstructible_comap_image, isConstructible_range_comap, isOpenMap_comap_algebraMap_tensorProduct_of_field, isOpenMap_comap_of_hasGoingDown_of_finitePresentation
5
Total5

PrimeSpectrum

Theorems

NameKindAssumesProvesValidatesDepends On
isConstructible_comap_C πŸ“–mathematicalTopology.IsConstructible
PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commSemiring
zariskiTopology
Set.image
comap
Polynomial.C
β€”exists_constructibleSetData_iff
IsScalarTower.right
ChevalleyThm.chevalley_polynomialC
Submodule.mem_top
ConstructibleSetData.isConstructible_toSet
isConstructible_comap_image πŸ“–mathematicalTopology.IsConstructible
PrimeSpectrum
CommRing.toCommSemiring
zariskiTopology
Set.image
comap
β€”RingHom.FinitePresentation.polynomial_induction
isConstructible_comap_C
RingHom.instRingHomClass
Topology.IsConstructible.image_of_isClosedEmbedding
isClosedEmbedding_comap_of_surjective
range_comap_of_surjective
isRetrocompact_zeroLocus_compl_of_fg
Set.image_congr
Set.image_comp
isConstructible_range_comap πŸ“–mathematicalβ€”Topology.IsConstructible
PrimeSpectrum
CommRing.toCommSemiring
zariskiTopology
Set.range
comap
β€”isConstructible_comap_image
Topology.IsConstructible.univ
Set.image_univ
isOpenMap_comap_algebraMap_tensorProduct_of_field πŸ“–mathematicalβ€”IsOpenMap
PrimeSpectrum
TensorProduct
Semifield.toCommSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.TensorProduct.instCommSemiring
zariskiTopology
comap
algebraMap
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
exists_fg_and_mem_baseChange
Algebra.FinitePresentation.of_finiteType
IsSimpleModule.instIsNoetherian
instIsSimpleModule
Subalgebra.fg_top
Set.ext
isPrime
mem_image_comap_basicOpen
not_iff_not
IsScalarTower.to_smulCommClass
IsScalarTower.right
TensorProduct.isScalarTower_left
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
Algebra.TensorProduct.ext
TensorProduct.isScalarTower
TensorProduct.smulCommClass_left
IsScalarTower.to_smulCommClass'
Algebra.ext_id
AlgHom.ext
AlgHom.restrictScalars.congr_simp
Algebra.TensorProduct.map_comp_includeLeft
Algebra.TensorProduct.cancelBaseChange_tmul
one_smul
Algebra.TensorProduct.cancelBaseChange_symm_tmul
Ideal.ResidueField.algHom_ext
EquivLike.toEmbeddingLike
Module.Flat.lTensor_preserves_injective_linearMap
Module.FaithfullyFlat.toFlat
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
Subtype.val_injective
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
isOpenMap_comap_of_hasGoingDown_of_finitePresentation
Algebra.HasGoingDown.of_flat
Module.Flat.baseChange
Module.Flat.of_free
Algebra.FinitePresentation.baseChange
TopologicalSpace.Opens.isOpen
eq_biUnion_of_isOpen
Set.image_iUnionβ‚‚
isOpen_iUnion
isOpenMap_comap_of_hasGoingDown_of_finitePresentation πŸ“–mathematicalβ€”IsOpenMap
PrimeSpectrum
CommRing.toCommSemiring
zariskiTopology
comap
algebraMap
CommSemiring.toSemiring
β€”TopologicalSpace.IsTopologicalBasis.isOpenMap_iff
isBasis_basic_opens
isOpen_of_stableUnderGeneralization_of_isConstructible
StableUnderGeneralization.image
Algebra.HasGoingDown.iff_generalizingMap_primeSpectrumComap
IsOpen.stableUnderGeneralization
TopologicalSpace.Opens.is_open'
isConstructible_comap_image
RingHom.finitePresentation_algebraMap
isConstructible_basicOpen

---

← Back to Index