Documentation Verification Report

IsOpenComapC

📁 Source: Mathlib/RingTheory/Spectrum/Prime/IsOpenComapC.lean

Statistics

MetricCount
DefinitionsimageOfDf
1
Theoremscomap_C_mem_imageOfDf, imageOfDf_eq_comap_C_compl_zeroLocus, isOpenMap_comap_C, isOpen_imageOfDf
4
Total5

AlgebraicGeometry.Polynomial

Definitions

NameCategoryTheorems
imageOfDf 📖CompOp
3 mathmath: comap_C_mem_imageOfDf, imageOfDf_eq_comap_C_compl_zeroLocus, isOpen_imageOfDf

Theorems

NameKindAssumesProvesValidatesDepends On
comap_C_mem_imageOfDf 📖mathematicalPrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commSemiring
Set
Set.instMembership
Compl.compl
Set.instCompl
PrimeSpectrum.zeroLocus
Set.instSingletonSet
imageOfDf
PrimeSpectrum.comap
Polynomial.C
exists_C_coeff_notMem
PrimeSpectrum.mem_compl_zeroLocus_iff_notMem
imageOfDf_eq_comap_C_compl_zeroLocus 📖mathematicalimageOfDf
Set.image
PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commSemiring
PrimeSpectrum.comap
Polynomial.C
Compl.compl
Set
Set.instCompl
PrimeSpectrum.zeroLocus
Set.instSingletonSet
Set.ext
Ideal.isPrime_map_C_of_isPrime
PrimeSpectrum.isPrime
Set.mem_compl_iff
PrimeSpectrum.mem_zeroLocus
Set.singleton_subset_iff
Ideal.mem_map_C_iff
PrimeSpectrum.ext
Ideal.ext
Polynomial.coeff_C_zero
Ideal.subset_span
Set.mem_image_of_mem
comap_C_mem_imageOfDf
isOpenMap_comap_C 📖mathematicalIsOpenMap
PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commSemiring
PrimeSpectrum.zariskiTopology
PrimeSpectrum.comap
Polynomial.C
compl_compl
Set.iUnion_of_singleton_coe
PrimeSpectrum.zeroLocus_iUnion
Set.compl_iInter
Set.image_iUnion
isOpen_iUnion
isOpen_imageOfDf
isOpen_imageOfDf 📖mathematicalIsOpen
PrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.zariskiTopology
imageOfDf
imageOfDf.eq_1
Set.setOf_exists
isOpen_iUnion
PrimeSpectrum.isOpen_basicOpen

---

← Back to Index