Documentation Verification Report

LTSeries

📁 Source: Mathlib/RingTheory/Spectrum/Prime/LTSeries.lean

Statistics

MetricCount
DefinitionsLTSeries
1
Theoremsexist_ltSeries_mem_one_of_mem_last, exist_mem_one_of_mem_maximal_ideal, exist_mem_one_of_mem_two
3
Total4

PrimeSpectrum

Theorems

NameKindAssumesProvesValidatesDepends On
exist_ltSeries_mem_one_of_mem_last 📖mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
asIdeal
RelSeries.last
PrimeSpectrum
setOf
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
RelSeries.toFun
RelSeries.length
RelSeries.head
RelSeries.last_singleton
RelSeries.last.eq_1
zero_add
exist_mem_one_of_mem_two
LTSeries.strictMono
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
tsub_zero
RelSeries.last_snoc
Eq.trans_ne
Fin.one_eq_mk_of_lt
RelSeries.snoc_castSucc
RelSeries.head_snoc
exist_mem_one_of_mem_maximal_ideal 📖mathematicalPrimeSpectrum
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
IsLocalRing.closedPoint
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
asIdeal
Submodule.instPartialOrder
LT.lt.le
Ideal.nonempty_minimalPrimes
LT.lt.ne
LE.le.trans_lt
sup_le
IsLocalRing.le_maximalIdeal_of_isPrime
isPrime
Ideal.span_singleton_le_iff_mem
Ne.lt_top
Ideal.IsPrime.ne_top'
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
LE.le.trans
le_sup_right
Ideal.mem_span_singleton_self
lt_of_le_not_ge
le_sup_left
lt_of_le_of_ne
Ideal.map_height_le_one_of_mem_minimalPrimes
Order.lt_one_iff_nonpos
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
ext
Ideal.height_le_iff
not_lt_zero
le_refl
exist_mem_one_of_mem_two 📖PrimeSpectrum
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
asIdeal
isPrime
Localization.isLocalization
Localization.AtPrime.isLocalRing
le_refl
ext
Localization.AtPrime.map_eq_maximalIdeal
LT.lt.le
LT.lt.trans
exist_mem_one_of_mem_maximal_ideal
IsLocalization.instIsNoetherianRingLocalization
OrderIso.lt_iff_lt
Ideal.mem_map_of_mem
LT.lt.trans_eq
OrderIso.symm_apply_apply
Eq.le
Ideal.under_map_of_isLocalizationAtPrime

(root)

Definitions

NameCategoryTheorems
LTSeries 📖CompOp
4 mathmath: Order.krullDim_eq_iSup_length, Order.coheight_eq_iSup_head_eq, Order.coheight_eq, Order.height_eq_iSup_last_eq

---

← Back to Index