Documentation Verification Report

Polynomial

πŸ“ Source: Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean

Statistics

MetricCount
Definitions0
Theoremscomap_C_surjective, image_comap_C_basicOpen, isOpenMap_comap_C, mem_image_comap_C_basicOpen, comap_C_surjective, exists_image_comap_of_monic, image_comap_C_basicOpen, isCompact_image_comap_of_monic, isOpenMap_comap_C, isOpen_image_comap_of_monic, mem_image_comap_C_basicOpen, exists_image_comap_of_finite_of_free, mem_image_comap_basicOpen, mem_image_comap_zeroLocus_sdiff, isNilpotent_tensor_residueField_iff
15
Total15

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
comap_C_surjective πŸ“–mathematicalβ€”PrimeSpectrum
MvPolynomial
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.comap
C
β€”PrimeSpectrum.comap_comp_apply
RingHom.ext
evalβ‚‚Hom_zero
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
constantCoeff_comp_C
PrimeSpectrum.comap_id
image_comap_C_basicOpen πŸ“–mathematicalβ€”Set.image
PrimeSpectrum
MvPolynomial
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.comap
C
SetLike.coe
TopologicalSpace.Opens
PrimeSpectrum.zariskiTopology
TopologicalSpace.Opens.instSetLike
PrimeSpectrum.basicOpen
Compl.compl
Set
Set.instCompl
PrimeSpectrum.zeroLocus
Set.range
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
coeff
β€”Set.ext
mem_image_comap_C_basicOpen
isOpenMap_comap_C πŸ“–mathematicalβ€”IsOpenMap
PrimeSpectrum
MvPolynomial
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.zariskiTopology
PrimeSpectrum.comap
C
β€”TopologicalSpace.IsTopologicalBasis.open_eq_sUnion
PrimeSpectrum.isTopologicalBasis_basic_opens
Set.image_sUnion
isOpen_sUnion
image_comap_C_basicOpen
IsClosed.isOpen_compl
PrimeSpectrum.isClosed_zeroLocus
mem_image_comap_C_basicOpen πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
Set.image
MvPolynomial
commSemiring
PrimeSpectrum.comap
C
SetLike.coe
TopologicalSpace.Opens
PrimeSpectrum.zariskiTopology
TopologicalSpace.Opens.instSetLike
PrimeSpectrum.basicOpen
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
PrimeSpectrum.asIdeal
coeff
β€”PrimeSpectrum.isPrime
Algebra.to_smulCommClass
PrimeSpectrum.mem_image_comap_basicOpen
not_iff_not
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
IsScalarTower.right
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
isNilpotent_iff_eq_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
ringHom_ext'
RingHom.ext
ext
smulCommClass
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
rTensorAlgEquiv_apply
coeff_map
coeff_rTensorAlgHom_tmul
coeff_C
Algebra.smul_def
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHom.instRingHomClass
mul_one
map_C
coeff_X'
ite_smul
one_smul
zero_smul
map_X

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
comap_C_surjective πŸ“–mathematicalβ€”PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.comap
C
β€”PrimeSpectrum.comap_comp_apply
RingHom.ext
eval_C
PrimeSpectrum.comap_id
exists_image_comap_of_monic πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
Set.image
PrimeSpectrum
Polynomial
commSemiring
PrimeSpectrum.comap
C
Set
Set.instSDiff
PrimeSpectrum.zeroLocus
Set.instSingletonSet
Compl.compl
Set.instCompl
SetLike.coe
Finset
Finset.instSetLike
β€”PrimeSpectrum.exists_image_comap_of_finite_of_free
Module.Finite.of_basis
IsScalarTower.right
Finite.of_fintype
Module.Free.of_basis
image_comap_C_basicOpen πŸ“–mathematicalβ€”Set.image
PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.comap
C
SetLike.coe
TopologicalSpace.Opens
PrimeSpectrum.zariskiTopology
TopologicalSpace.Opens.instSetLike
PrimeSpectrum.basicOpen
Compl.compl
Set
Set.instCompl
PrimeSpectrum.zeroLocus
Set.range
coeff
β€”Set.ext
mem_image_comap_C_basicOpen
isCompact_image_comap_of_monic πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
IsCompact
PrimeSpectrum
PrimeSpectrum.zariskiTopology
Set.image
Polynomial
commSemiring
PrimeSpectrum.comap
C
Set
Set.instSDiff
PrimeSpectrum.zeroLocus
Set.instSingletonSet
β€”exists_image_comap_of_monic
Set.iUnion_of_singleton_coe
PrimeSpectrum.zeroLocus_iUnion
Set.compl_iInter
isCompact_iUnion
Finite.of_fintype
PrimeSpectrum.basicOpen_eq_zeroLocus_compl
PrimeSpectrum.isCompact_basicOpen
isOpenMap_comap_C πŸ“–mathematicalβ€”IsOpenMap
PrimeSpectrum
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.zariskiTopology
PrimeSpectrum.comap
C
β€”TopologicalSpace.IsTopologicalBasis.open_eq_sUnion
PrimeSpectrum.isTopologicalBasis_basic_opens
Set.image_sUnion
isOpen_sUnion
image_comap_C_basicOpen
IsClosed.isOpen_compl
PrimeSpectrum.isClosed_zeroLocus
isOpen_image_comap_of_monic πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
IsOpen
PrimeSpectrum
PrimeSpectrum.zariskiTopology
Set.image
Polynomial
commSemiring
PrimeSpectrum.comap
C
Set
Set.instSDiff
PrimeSpectrum.zeroLocus
Set.instSingletonSet
β€”exists_image_comap_of_monic
IsClosed.isOpen_compl
PrimeSpectrum.isClosed_zeroLocus
mem_image_comap_C_basicOpen πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
Set.image
Polynomial
CommSemiring.toSemiring
commSemiring
PrimeSpectrum.comap
C
SetLike.coe
TopologicalSpace.Opens
PrimeSpectrum.zariskiTopology
TopologicalSpace.Opens.instSetLike
PrimeSpectrum.basicOpen
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
PrimeSpectrum.asIdeal
coeff
β€”PrimeSpectrum.isPrime
Algebra.to_smulCommClass
PrimeSpectrum.mem_image_comap_basicOpen
not_iff_not
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
IsScalarTower.right
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
isNilpotent_iff_eq_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
ringHom_ext'
RingHom.ext
ext
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
map_C
one_smul
map_X
coeff_map

PrimeSpectrum

Theorems

NameKindAssumesProvesValidatesDepends On
exists_image_comap_of_finite_of_free πŸ“–mathematicalβ€”Set.image
PrimeSpectrum
CommRing.toCommSemiring
comap
algebraMap
CommSemiring.toSemiring
Set
Set.instSDiff
zeroLocus
Set.instSingletonSet
Compl.compl
Set.instCompl
SetLike.coe
Finset
Finset.instSetLike
β€”IsScalarTower.right
smulCommClass_self
IsScalarTower.left
Ideal.instIsTwoSided_1
Set.ext
isPrime
Submodule.Quotient.smulCommClass
Algebra.to_smulCommClass
mem_image_comap_zeroLocus_sdiff
IsScalarTower.algebraMap_apply
TensorProduct.isScalarTower_left
isNilpotent_tensor_residueField_iff
Finset.coe_image
Finset.coe_range
mem_image_comap_basicOpen πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
Set.image
comap
algebraMap
CommSemiring.toSemiring
SetLike.coe
TopologicalSpace.Opens
zariskiTopology
TopologicalSpace.Opens.instSetLike
basicOpen
IsNilpotent
TensorProduct
Ideal.ResidueField
asIdeal
isPrime
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
TensorProduct.zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Algebra.TensorProduct.leftAlgebra
Algebra.to_smulCommClass
β€”isPrime
IsScalarTower.right
Algebra.to_smulCommClass
Submodule.Quotient.smulCommClass
Ideal.Quotient.isScalarTower
Ideal.span_empty
Ideal.instIsTwoSidedBot
RingEquiv.map_mul'
RingEquiv.map_add'
AlgHom.commutes'
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
AlgEquiv.commutes
mem_image_comap_zeroLocus_sdiff
zeroLocus_empty
Set.compl_eq_univ_diff
basicOpen_eq_zeroLocus_compl
mem_image_comap_zeroLocus_sdiff πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
Set.image
comap
algebraMap
CommSemiring.toSemiring
Set.instSDiff
zeroLocus
Set.instSingletonSet
IsNilpotent
TensorProduct
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Ideal.span
Ideal.ResidueField
asIdeal
isPrime
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
IsLocalRing.instCommRingResidueField
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Submodule.Quotient.module'
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
Algebra.toModule
IsScalarTower.right
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
TensorProduct.zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Algebra.TensorProduct.leftAlgebra
Submodule.Quotient.smulCommClass
Ring.toSemiring
Algebra.to_smulCommClass
β€”isPrime
IsScalarTower.right
Submodule.Quotient.smulCommClass
Algebra.to_smulCommClass
RingHom.instRingHomClass
Ideal.span_le
Ideal.ker_algebraMap_residueField
Ideal.IsPrime.under
Ideal.Quotient.isScalarTower
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
Ideal.instIsTwoSided_1
Commute.all
IsNilpotent.map
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.mem_ker
isNilpotent_iff_eq_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
AlgHom.commutes
Ideal.mem_sInf
nilradical_eq_sInf
mem_nilradical
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
TensorProduct.zero_tmul
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
comap_comp_apply
IsScalarTower.algebraMap_eq
TensorProduct.isScalarTower_left
AlgHom.comp_algebraMap
Unique.instSubsingleton
ext
Ideal.ext

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isNilpotent_tensor_residueField_iff πŸ“–mathematicalβ€”IsNilpotent
TensorProduct
CommRing.toCommSemiring
Ideal.ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
TensorProduct.zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Algebra.TensorProduct.leftAlgebra
Algebra.to_smulCommClass
Ideal
SetLike.instMembership
Submodule.setLike
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Polynomial.coeff
LinearMap.charpoly
Ring.toAddCommGroup
CommRing.toRing
AlgHom
Module.End
Module.End.instSemiring
Module.End.instAlgebra
smulCommClass_self
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.left
AlgHom.funLike
Algebra.lmul
β€”subsingleton_or_nontrivial
Algebra.to_smulCommClass
smulCommClass_self
IsScalarTower.left
RingHom.codomain_trivial
IsScalarTower.right
Module.finrank_subsingleton
Unique.instSubsingleton
IsScalarTower.to_smulCommClass
Module.finrank_tensorProduct
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.self
Module.finrank_self
one_mul
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
AlgHom.algHomClass
Algebra.lmul_injective
Module.Free.tensor
Module.Finite.base_change
LinearMap.isNilpotent_iff_charpoly
instIsDomain
Algebra.baseChange_lmul
LinearMap.charpoly_baseChange
LinearMap.charpoly_natDegree
RingHom.instRingHomClass
Polynomial.coeff_map
Polynomial.coeff_X_pow
LT.lt.ne
Ideal.ker_algebraMap_residueField
Polynomial.ext
eq_or_ne
Polynomial.leadingCoeff.eq_1
LinearMap.charpoly_monic
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
lt_or_gt_of_ne
Polynomial.coeff_eq_zero_of_natDegree_lt
map_zero
MonoidWithZeroHomClass.toZeroHomClass
LT.lt.ne'

---

← Back to Index