π Source: Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean
comap_C_surjective
image_comap_C_basicOpen
isOpenMap_comap_C
mem_image_comap_C_basicOpen
exists_image_comap_of_monic
isCompact_image_comap_of_monic
isOpen_image_comap_of_monic
exists_image_comap_of_finite_of_free
mem_image_comap_basicOpen
mem_image_comap_zeroLocus_sdiff
isNilpotent_tensor_residueField_iff
PrimeSpectrum
MvPolynomial
CommRing.toCommSemiring
commSemiring
PrimeSpectrum.comap
C
PrimeSpectrum.comap_comp_apply
RingHom.ext
evalβHom_zero
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
constantCoeff_comp_C
PrimeSpectrum.comap_id
Set.image
SetLike.coe
TopologicalSpace.Opens
PrimeSpectrum.zariskiTopology
TopologicalSpace.Opens.instSetLike
PrimeSpectrum.basicOpen
Compl.compl
Set
Set.instCompl
PrimeSpectrum.zeroLocus
Set.range
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
coeff
Set.ext
IsOpenMap
TopologicalSpace.IsTopologicalBasis.open_eq_sUnion
PrimeSpectrum.isTopologicalBasis_basic_opens
Set.image_sUnion
isOpen_sUnion
IsClosed.isOpen_compl
PrimeSpectrum.isClosed_zeroLocus
Set.instMembership
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
PrimeSpectrum.asIdeal
PrimeSpectrum.isPrime
Algebra.to_smulCommClass
PrimeSpectrum.mem_image_comap_basicOpen
not_iff_not
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
IsScalarTower.right
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
isNilpotent_iff_eq_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
ringHom_ext'
ext
smulCommClass
RingHomCompTriple.comp_apply
rTensorAlgEquiv_apply
coeff_map
coeff_rTensorAlgHom_tmul
coeff_C
Algebra.smul_def
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHom.instRingHomClass
mul_one
map_C
coeff_X'
ite_smul
one_smul
zero_smul
map_X
Polynomial
eval_C
Monic
Set.instSDiff
Set.instSingletonSet
Finset
Finset.instSetLike
PrimeSpectrum.exists_image_comap_of_finite_of_free
Module.Finite.of_basis
Finite.of_fintype
Module.Free.of_basis
IsCompact
Set.iUnion_of_singleton_coe
PrimeSpectrum.zeroLocus_iUnion
Set.compl_iInter
isCompact_iUnion
PrimeSpectrum.basicOpen_eq_zeroLocus_compl
PrimeSpectrum.isCompact_basicOpen
IsOpen
comap
algebraMap
zeroLocus
smulCommClass_self
IsScalarTower.left
Ideal.instIsTwoSided_1
isPrime
Submodule.Quotient.smulCommClass
IsScalarTower.algebraMap_apply
TensorProduct.isScalarTower_left
Finset.coe_image
Finset.coe_range
zariskiTopology
basicOpen
IsNilpotent
TensorProduct
Ideal.ResidueField
asIdeal
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
TensorProduct.zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
Algebra.TensorProduct.leftAlgebra
Ideal.Quotient.isScalarTower
Ideal.span_empty
Ideal.instIsTwoSidedBot
RingEquiv.map_mul'
RingEquiv.map_add'
AlgHom.commutes'
AlgEquiv.commutes
zeroLocus_empty
Set.compl_eq_univ_diff
basicOpen_eq_zeroLocus_compl
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.span
Ideal.Quotient.commRing
Submodule.Quotient.module'
CommRing.toRing
Ring.toAddCommGroup
Algebra.toSMul
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
Ring.toSemiring
Ideal.span_le
Ideal.ker_algebraMap_residueField
Ideal.IsPrime.under
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
Commute.all
IsNilpotent.map
AlgHom.algHomClass
RingHom.mem_ker
AlgHom.commutes
Ideal.mem_sInf
nilradical_eq_sInf
mem_nilradical
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
TensorProduct.zero_tmul
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
comap_comp_apply
IsScalarTower.algebraMap_eq
AlgHom.comp_algebraMap
Unique.instSubsingleton
Ideal.ext
Polynomial.coeff
LinearMap.charpoly
AlgHom
Module.End
Module.End.instSemiring
Module.End.instAlgebra
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgHom.funLike
Algebra.lmul
subsingleton_or_nontrivial
RingHom.codomain_trivial
Module.finrank_subsingleton
IsScalarTower.to_smulCommClass
Module.finrank_tensorProduct
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.self
Module.finrank_self
one_mul
Algebra.lmul_injective
Module.Free.tensor
Module.Finite.base_change
LinearMap.isNilpotent_iff_charpoly
Algebra.baseChange_lmul
LinearMap.charpoly_baseChange
LinearMap.charpoly_natDegree
Polynomial.coeff_map
Polynomial.coeff_X_pow
LT.lt.ne
Polynomial.ext
eq_or_ne
Polynomial.leadingCoeff.eq_1
LinearMap.charpoly_monic
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
lt_or_gt_of_ne
Polynomial.coeff_eq_zero_of_natDegree_lt
LT.lt.ne'
---
β Back to Index