Documentation Verification Report

TensorProduct

📁 Source: Mathlib/RingTheory/Spectrum/Prime/TensorProduct.lean

Statistics

MetricCount
DefinitionstensorProductTo, TensorProduct
2
Theoremscontinuous_tensorProductTo, isEmbedding_tensorProductTo_of_surjectiveOnStalks, isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux
3
Total5

PrimeSpectrum

Definitions

NameCategoryTheorems
tensorProductTo 📖CompOp
2 mathmath: isEmbedding_tensorProductTo_of_surjectiveOnStalks, continuous_tensorProductTo

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_tensorProductTo 📖mathematical—Continuous
PrimeSpectrum
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instCommSemiring
zariskiTopology
instTopologicalSpaceProd
tensorProductTo
—Continuous.prodMk
continuous_comap
isEmbedding_tensorProductTo_of_surjectiveOnStalks 📖mathematicalRingHom.SurjectiveOnStalks
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Topology.IsEmbedding
PrimeSpectrum
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Algebra.TensorProduct.instCommSemiring
zariskiTopology
instTopologicalSpaceProd
tensorProductTo
—Algebra.to_smulCommClass
IsScalarTower.right
LE.le.antisymm
Continuous.le_induced
continuous_tensorProductTo
TopologicalSpace.Opens.IsBasis.le_iff
isBasis_basic_opens
isOpen_iff_forall_mem_open
RingHom.instRingHomClass
RingHom.SurjectiveOnStalks.exists_mul_eq_tmul
Ideal.IsPrime.comap
isPrime
Submonoid.mul_mem
Algebra.TensorProduct.tmul_mul_tmul
mul_one
one_mul
Ideal.mul_mem_left
IsOpen.prod
TopologicalSpace.Opens.is_open'
Iff.not
Ideal.IsPrime.mul_mem_iff_mem_or_mem
Ideal.instIsTwoSided_1
isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux
isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux 📖mathematicalRingHom.SurjectiveOnStalks
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
tensorProductTo
PrimeSpectrum
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Algebra.TensorProduct.instCommSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
—Algebra.to_smulCommClass
IsScalarTower.right
RingHom.instRingHomClass
RingHom.SurjectiveOnStalks.exists_mul_eq_tmul
Ideal.IsPrime.comap
isPrime
Ideal.mul_mem_left
Submonoid.mul_mem
Algebra.TensorProduct.tmul_mul_tmul
one_mul
mul_one
Ideal.mul_mem_right
Ideal.instIsTwoSided_1

(root)

Definitions

NameCategoryTheorems
TensorProduct 📖CompOp
1804 mathmath: CommRingCat.tensorProd_map_right, Pi.comul_eq_adjoint, TensorProduct.finsuppRight_apply, DFinsupp.comul_single, SemimoduleCat.MonoidalCategory.triangle, TensorProduct.mapInclIsometry_apply, LinearMap.lTensor_ker_subtype_tensorKerEquiv_symm, Algebra.TensorProduct.congr_trans, KaehlerDifferential.kerCotangentToTensor_toCotangent, Representation.repOfTprodIso_inv_apply, exists_fg_and_mem_baseChange, CliffordAlgebra.toBaseChange_reverse, Algebra.FormallyUnramified.one_tmul_mul_elem, TensorProduct.congr_symm, Subalgebra.mulMap_comm, Bialgebra.comulAlgHom_apply, TensorProduct.forall_vanishesTrivially_iff_forall_fg_rTensor_injective, Submodule.rTensorOne_symm_apply, Bialgebra.comul_natCast, lTensor.inverse_comp_lTensor, LinearMap.baseChange_eq_ltensor, Module.Flat.iff_lTensor_exact', TensorProduct.enorm_lid, Algebra.Generators.baseChange_val, Submodule.FG.rTensor.directedSystem, Ideal.comap_fiberIsoOfBijectiveResidueField_apply, TensorProduct.inner_tmul, Matrix.toLin_kronecker, AlternatingMap.domCoprod.summand_mk'', Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right, TensorProduct.LieModule.liftLie_apply, Algebra.TensorProduct.instSMulCommClassTensorProduct, Algebra.TensorProduct.lift_comp_includeLeft, Coalgebra.lTensor_counit_comul, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, RingHom.SurjectiveOnStalks.baseChange, LinearEquiv.lTensor_pow, TensorProduct.ext_iff_inner_left, Rep.MonoidalClosed.linearHomEquiv_symm_hom, Algebra.TensorProduct.intCast_def', GradedTensorProduct.hom_ext_iff, Module.Basis.tensorProduct_apply, TensorProduct.AlgebraTensorModule.rid_symm_apply, Algebra.TensorProduct.prodRight_tmul_fst, Module.FaithfullyFlat.iff_exact_iff_lTensor_exact, IsGroupLikeElem.comul_eq_tmul_self, MvPolynomial.rTensor_apply_tmul_apply, PrimeSpectrum.preimageEquivFiber_symm_apply_coe, PiTensorProduct.tmulEquiv_symm_apply, TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_symm, LinearMap.baseChange_smul, MvPolynomial.rTensorAlgEquiv_apply, Algebra.Generators.H1Cotangent.δAux_mul, AlgCat.hom_inv_associator, LinearMap.convMul_def, BialgCat.rightUnitor_def, HopfAlgCat.rightUnitor_def, Submodule.mulMap_tmul, Algebra.TensorProduct.includeLeft_map_center_le, Submodule.comm_trans_lTensorOne, MvPolynomial.scalarRTensor_apply_monomial_tmul, LieSubmodule.lowerCentralSeries_tensor_eq_baseChange, LinearMap.lTensor_sub, LaurentPolynomial.comul_T, Submodule.exists_fg_le_eq_rTensor_inclusion, finsuppTensorFinsupp_apply, MvPolynomial.universalFactorizationMap_comp_map, TensorProduct.range_mapIncl, CommRingCat.pushoutCocone_pt, TensorProduct.congr_congr, Representation.repOfTprodIso_apply, TensorProduct.instSmall, LinearMap.rTensor_comm, LinearMap.BilinMap.baseChange_isSymm, TensorProduct.equivFinsuppOfBasisLeft_symm_apply, Subalgebra.LinearDisjoint.include_range, Submodule.tensorEquivSpan_apply_tmul, LinearMap.baseChange_comp, LinearEquiv.coe_baseChange, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', CommAlgCat.braiding_hom_hom, TensorProduct.AlgebraTensorModule.congr_refl, TensorProduct.smul_add, Module.FaithfullyFlat.lTensor_injective_iff_injective, kroneckerTMulAlgEquiv_symm_single_tmul, Rep.coindToInd_of_support_subset_orbit, Module.Flat.iff_rTensor_preserves_injective_linearMap, Algebra.IsPushout.equiv_symm_algebraMap_left, Bialgebra.TensorProduct.map_toAlgHom, AddMonoidAlgebra.comul_single, Algebra.IsIntegral.tensorProduct, Representation.Coinvariants.mk_inv_tmul, LinearMap.tensorKer_tmul, TensorProduct.AlgebraTensorModule.map_id, LinearMap.lTensor_rTensor_comp_assoc, Module.rankAtStalk_eq, TensorProduct.sum_tmul_basis_right_injective, Algebra.TensorProduct.congr_symm_apply, Pi.comul_comp_dFinsuppCoeFnLinearMap, Submodule.mulMap_one_right_eq, TensorProduct.star_tmul, PolynomialLaw.factorsThrough_toFunLifted_π, TensorProduct.toIntegralClosure_bijective_of_isLocalization, TensorProduct.piScalarRight_symm_algebraMap, OrthonormalBasis.toBasis_tensorProduct, TensorProduct.congrIsometry_refl_refl, Algebra.TensorProduct.mapOfCompatibleSMul_surjective, TensorProduct.AlgebraTensorModule.congr_symm, TensorProduct.enorm_comm, Algebra.TensorProduct.natCast_def', LinearMap.rTensor_smul_action, TensorProduct.AlgebraTensorModule.rid_tmul, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, Coalgebra.sum_map_tmul_counit_eq, Algebra.IsPushout.cancelBaseChange_tmul, TensorProduct.span_tmul_eq_top, TensorProduct.tensorTensorTensorComm_tmul, PolyEquivTensor.right_inv, TensorProduct.gradedComm_tmul_one, TensorProduct.AlgebraTensorModule.congr_symm_tmul, Coalgebra.sum_tmul_counit_eq, Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single, Algebra.FormallyUnramified.lmul_elem, QuotSMulTop.equivTensorQuot_naturality, MonoidAlgebra.tensorEquiv.invFun_tmul, Module.Flat.lTensor_preserves_injective_linearMap, Module.Flat.ker_lTensor_eq, KaehlerDifferential.cotangentComplexBaseChange_tmul, TensorProduct.tensorTensorTensorComm_comp_map, Module.Invertible.instTensorProduct_1, TensorProduct.range_map, AlgebraicGeometry.diagonal_SpecMap, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, Matrix.kroneckerTMul_zero, Coalgebra.coassoc_symm_apply, LinearMap.tensorEqLocusEquiv_apply, Algebra.FormallyUnramified.isOpenImmersion_SpecMap_lmul, lTensor.inverse_of_rightInverse_comp_lTensor, LinearMap.baseChange_baseChange, Algebra.TensorProduct.prodRight_symm_tmul, Algebra.TensorProduct.tensorTensorTensorComm_symm, IsLocalization.mk'_tmul, TensorPower.gMul_eq_coe_linearMap, IsSMulRegular.lTensor, TensorProduct.map_injective_of_flat_flat_of_isDomain, LinearMap.lTensor_id_apply, TensorProduct.map_comp_comm_eq, InnerProductSpace.canonicalCovariantTensor_eq_sum, Module.Flat.lTensor_exact, Module.FaithfullyFlat.lTensor_exact_iff_exact, Algebra.TensorProduct.map_comp, AlgCat.hom_inv_rightUnitor, AlternatingMap.domCoprod_coe, AdicCompletion.ofTensorProduct_surjective_of_finite, MvPolynomial.scalarRTensor_apply_X_tmul_apply, TensorProduct.ext_iff_inner_right_threefold', TensorProduct.map_add_right, Module.FaithfullyFlat.lTensor_bijective_iff_bijective, Algebra.FormallyUnramified.finite_of_free_aux, rTensor_injective_iff_lcomp_surjective, TensorProduct.gradedMul_assoc, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, TensorProduct.toLinearEquiv_lidIsometry, contractLeft_assoc_coevaluation, Matrix.kroneckerTMul_assoc', Bialgebra.TensorProduct.counitAlgHom_def, Algebra.TensorProduct.algebraMap_apply, Submodule.FG.lTensor.directedSystem, LinearMap.rTensor_id, CommRing.Pic.mul_eq_tensor, TensorProduct.AlgebraTensorModule.rightComm_symm_tmul, LinearMap.tensorKer_coe, Module.rank_baseChange, TensorProduct.map_map, Algebra.PreSubmersivePresentation.baseChange_jacobian, Algebra.IsPushout.cancelBaseChange_symm_tmul, IsLocalization.instIsLocalizedModuleTensorProductMap, Algebra.TensorProduct.piRightHom_mul, Submodule.val_mulMap'_tmul, TensorProduct.quotTensorEquivQuotSMul_comp_mkQ_rTensor, CliffordAlgebra.equivBaseChange_symm_apply, LinearMap.lTensor_smul, Module.FaithfullyFlat.instTensorProduct, TensorProduct.directSum_lof_tmul_lof, KaehlerDifferential.kerToTensor_apply, TensorProduct.AlgebraTensorModule.lTensor_comp_cancelBaseChange, instIsLocalRingTensorProductResidueFieldOfIsLocalHomRingHomAlgebraMap, TensorProduct.AlgebraTensorModule.lTensor_id, RingHom.SurjectiveOnStalks.exists_mul_eq_tmul, TensorProduct.isScalarTower_right, TensorProduct.quotientTensorQuotientEquiv_symm_apply_mk_tmul, Pi.comul_comp_single, zero_prodMap_dualTensorHom, LinearMap.mul'_comp_comm, TensorProduct.AlgebraTensorModule.rTensor_one, Algebra.TensorProduct.basis_apply, LinearMap.lTensor_surj_iff_rTensor_surj, LinearMap.liftBaseChange_one_tmul, TensorProduct.zero_smul, Subalgebra.mulMap_toLinearMap, Algebra.TensorProduct.piScalarRight_tmul, LinearMap.rTensor_id_apply, KaehlerDifferential.isScalarTower', AlgHom.mulLeftRightMatrix.inv_comp, LinearEquiv.rTensor_mul, le_comap_range_lTensor, BialgCat.associator_def, TensorProduct.liftAux_tmul, QuotSMulTop.equivTensorQuot_naturality_mk, Module.endTensorEndAlgHom_apply, tensorIteratedFDerivTwo_eq_iteratedFDeriv, TensorProduct.coe_directSumRight', Algebra.TensorProduct.comm_comp_map_apply, finsuppTensorFinsupp'_symm_single_eq_tmul_single_one, Rep.finsuppToCoinvariantsTensorFree_single, PolyEquivTensor.toFunAlgHom_apply_tmul, PolynomialLaw.exists_lift', LinearMap.toMatrix_baseChange, TensorProduct.nontrivial_of_linearMap_injective_of_flat_right, BialgCat.whiskerLeft_def, Coalgebra.sum_counit_tmul_eq, HopfAlgCat.whiskerLeft_def, SemimoduleCat.hom_inv_rightUnitor, TensorProduct.adjoint_map, LinearIsometryEquiv.lTensor_apply, TensorProduct.dualDistrib_dualDistribInvOfBasis_right_inverse, LinearMap.rTensor_comp_lTensor, Algebra.Extension.lTensor_cotangentComplex_eq_cotangentComplexBaseChange, LinearMap.rTensor_comp_map, LinearMap.rTensor_comp_flip_mk, Algebra.TensorProduct.sMulCommClass_right, TensorProduct.dualDistrib_apply_comm, Representation.Coinvariants.mk_tmul_inv, CharacterModule.curry_apply_apply, Algebra.IsStandardSmoothOfRelativeDimension.baseChange, LinearEquiv.coe_lTensor, IsPurelyInseparable.exists_pow_mem_range_tensorProduct, Algebra.TensorProduct.assoc_tmul, Algebra.IsAlgebraic.tensorProduct, TensorProduct.map₂_eq_range_lift_comp_mapIncl, Subalgebra.comm_trans_rTensorBot, Module.FaithfullyFlat.iff_zero_iff_rTensor_zero, Subalgebra.mulMap_map_comp_eq, TensorProduct.directLimitRight_tmul_of, TensorProduct.mapIsometry_id_id, KaehlerDifferential.ideal_fg, Algebra.TensorProduct.map_tmul, TensorProduct.flip_mk_surjective, LinearMap.rTensor_tmul, TensorProduct.exists_finite_submodule_of_finite', TensorProduct.toIntegralClosure_bijective_of_smooth, TensorProduct.tensorQuotEquivQuotSMul_comp_mkQ_lTensor, Algebra.instIsReducedTensorProductOfIsAlgebraicOfIsGeometricallyReduced, Algebra.isGeometricallyReduced_iff, Algebra.Generators.liftBaseChange_injective_of_isLocalizationAway, TensorProduct.equivFinsuppOfBasisLeft_apply_tmul_apply, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, TensorProduct.leftComm_tmul, Orthonormal.basisTensorProduct, TensorProduct.comm_comm, LinearMap.det_baseChange, QuadraticForm.tmul_tensorMap_apply, Submodule.mulMap_comm, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, Module.Flat.out, TensorProduct.map_injective_of_flat_flat', TensorProduct.AlgebraTensorModule.map_smul_left, Algebra.TensorProduct.leftComm_tmul, LinearEquiv.det_baseChange, TensorProduct.gradedMul_def, rTensor.inverse_of_rightInverse_apply, Algebra.TensorProduct.includeRight_apply, KaehlerDifferential.instIsScalarTowerTensorProduct, CommRingCat.pushoutCocone_inl, ModuleCat.MonoidalCategory.associator_hom_apply, TensorProduct.AlgebraTensorModule.restrictScalars_lTensor, Finsupp.linearCombination_one_tmul, Module.FaithfullyFlat.lTensor_surjective_iff_surjective, CliffordAlgebra.ofBaseChange_toBaseChange, TensorProduct.AlgebraTensorModule.restrictScalars_curry, LinearMap.trace_eq_contract_of_basis', Submodule.linearDisjoint_iff, QuadraticForm.tmul_comp_tensorComm, QuadraticForm.polarBilin_baseChange, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, LinearEquiv.comm_trans_lTensor_trans_comm_eq, GradedTensorProduct.auxEquiv_one, Algebra.TensorProduct.basis_repr_tmul, CoalgHom.map_comp_comul, TensorProduct.toMatrix_assoc, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, Module.FaithfullyFlat.zero_iff_rTensor_zero, LinearMap.lTensor_comp_comm, Polynomial.X_pow_smul_rTensor_monomial, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, retractionOfSectionOfKerSqZero_comp_kerToTensor, LinearMap.coe_lTensorHom, KaehlerDifferential.mapBaseChange_tmul, MatrixEquivTensor.invFun_add, ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply, LinearMap.baseChange_one, PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks, TensorProduct.tmul_sub, Matrix.toAlgEquiv_kroneckerStarAlgEquiv, Bialgebra.TensorProduct.map_toCoalgHom, Algebra.Generators.H1Cotangent.δAux_C, TensorProduct.gradedComm_algebraMap_tmul, LinearMap.BilinMap.tmul_isSymm, TensorProduct.finsuppLeft_smul', Algebra.FormallySmooth.iff_injective_cotangentComplexBaseChange_residueField, CliffordAlgebra.toBaseChange_comp_ofBaseChange, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, TensorProduct.liftAddHom_tmul, Coalgebra.sum_map_tmul_tmul_eq, Algebra.TensorProduct.basisAux_map_smul, PolynomialLaw.smul_def, Pi.intrinsicStar_comul_commSemiring, TensorProduct.equivFinsuppOfBasisRight_apply_tmul, TensorProduct.congr_zpow, ModuleCat.MonoidalCategory.whiskerLeft_def, LinearMap.lTensor_range, Coalgebra.comm_comul, LocalizedModule.equivTensorProduct_symm_apply_tmul_one, Rep.ihom_ev_app_hom, CommRing.Pic.mk_tensor, LocalizedModule.equivTensorProduct_apply_mk, Algebra.TensorProduct.lid_tmul, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, Module.Flat.iff_lTensor_preserves_injective_linearMap, lTensor.inverse_of_rightInverse_apply, TensorProduct.equivFinsuppOfBasisLeft_apply_tmul, QuadraticForm.polarBilin_tmul, TensorProduct.lidIsometry_apply, Module.Presentation.tensor_R, LinearEquiv.lTensor_zpow, Module.FaithfullyFlat.lTensor_nontrivial, Matrix.toAlgEquiv_kroneckerTMulStarAlgEquiv, Algebra.TensorProduct.tensorTensorTensorComm_symm_tmul, isGroupLikeElem_iff, LinearMap.tensorKerEquivOfSurjective_symm_tmul, TensorProduct.equivFinsuppOfBasisLeft_symm, KaehlerDifferential.mulActionBaseChange_smul_add, TensorProduct.comm_trans_lid, TensorProduct.Algebra.smul_def, Module.FaithfullyFlat.subsingleton_tensorProduct_iff_right, LinearMap.tensorEqLocus_coe, tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin, PointedCone.tmul_mem_maxTensorProduct, TensorProduct.curry_injective, Algebra.TensorProduct.includeLeft_apply, lTensorHomEquivHomLTensor_apply, TensorProduct.finsuppScalarRight_apply, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Ideal.Fiber.lift_residueField_surjective, Module.FaithfullyFlat.nontrivial_tensorProduct_iff_right, isBaseChange_tensorProduct_map, LinearMap.trace_eq_contract, LinearEquiv.rTensor_trans_congr, LocalizedModule.equivTensorProduct_symm_apply_tmul, LinearMap.rTensor_sub, Module.comap_freeLocus_le, CliffordAlgebra.toBaseChange_comp_involute, TensorProduct.finsuppScalarRight_apply_tmul, TensorProduct.rightComm_symm, Algebra.IsEpi.injective_lift_mul, Algebra.TensorProduct.right_algebraMap_apply, Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap, Coalgebra.TensorProduct.lid_tmul, homTensorHomEquiv_apply, TensorProduct.mk_apply, TensorProduct.mapOfCompatibleSMul_surjective, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, finsuppTensorFinsupp'_single_tmul_single, TensorProduct.smul_zero, Module.Flat.iff_rTensor_injective, ModuleCat.MonoidalCategory.tensorHom_def, LinearMap.baseChange_pow, Representation.tprod_apply, CommRingCat.pushoutCocone_inr, dualTensorHom_apply, TensorProduct.Algebra.exists_of_fg, QuadraticForm.tensorRId_symm_apply, Module.Invertible.tensorProductComm_eq_refl, LinearEquiv.lTensor_trans_congr, Module.Invertible.rTensorEquiv_apply_apply, lTensorHomEquivHomLTensor_toLinearMap, LinearEquiv.lTensor_tmul, Ideal.map_includeRight_eq, Algebra.TensorProduct.includeLeft_bijective, AlgebraicGeometry.pullbackSpecIso_inv_snd, AlgHom.comp_mul', Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, LinearMap.intrinsicStar_mul', TensorProduct.exists_finite_submodule_left_of_setFinite, TensorProduct.quotientTensorEquiv_symm_apply_mk_tmul, AlgCat.hom_hom_associator, LinearEquiv.rTensor_zpow, MonoidAlgebra.scalarTensorEquiv_tmul, QuadraticForm.tensorAssoc_toLinearEquiv, TensorProduct.AlgebraTensorModule.rTensor_tensor, TensorProduct.neg_tmul, Algebra.PreSubmersivePresentation.baseChange_toPresentation, LinearMap.polyCharpoly_baseChange, TensorProduct.AlgebraTensorModule.rTensor_comp, coevaluation_apply_one, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, IsLocalRing.map_tensorProduct_mk_eq_top, Bialgebra.TensorProduct.comulAlgHom_def, Representation.coinvariantsTprodLeftRegularLEquiv_apply, finsuppTensorFinsuppLid_symm_single_smul, LinearMap.lTensor_surjective, TensorProduct.congr_refl_refl, rTensorHomEquivHomRTensor_apply, LinearMap.trace_eq_contract_apply, TensorProduct.congr_trans, dualTensorHomEquivOfBasis_symm_cancel_right, TensorProduct.tmul_smul, SemiconjBy.tmul, TensorProduct.map_add_left, MvPolynomial.scalarRTensor_apply_tmul, TensorProduct.prodLeft_tmul, PrimeSpectrum.isOpenMap_comap_algebraMap_tensorProduct_of_field, TensorProduct.tensorTensorTensorComm_symm, IsLocalization.tensorProduct_isLocalizedModule, MultilinearMap.domCoprodDep_apply, Algebra.TensorProduct.map_ker, AddMonoidAlgebra.tensorEquiv.invFun_tmul, finsuppTensorFinsupp'_symm_single_mul, Algebra.TensorProduct.includeRight_map_center_le, Algebra.TensorProduct.productMap_left_apply, Algebra.TensorProduct.instSMulCommClassTensorProduct_1, Algebra.TensorProduct.algebraMap_eq_includeRight, CoalgCat.tensorHom_def, Submodule.surjective_tensorToSpan, CommRingCat.coproductCocone_inl, LinearMap.BilinForm.tensorDistribEquiv_toLinearMap, Subalgebra.lTensorBot_one_tmul, PolyEquivTensor.toFunLinear_mul_tmul_mul, TensorProduct.directSumRight_comp_rTensor, SemimoduleCat.hom_hom_rightUnitor, KaehlerDifferential.tensorKaehlerEquivBase_tmul, lTensor.inverse_apply, AlgebraicGeometry.pullbackSpecIso_hom_base, TensorProduct.map_map_assoc_symm, Module.Invertible.bijective_curry, KaehlerDifferential.tensorKaehlerEquivBase_symm_apply, Algebra.TensorProduct.productMap_left, Subalgebra.mulMap_bot_left_eq, TensorProduct.comm_symm, TensorProduct.instDirectedSystemCoeLinearMapIdRTensor, Algebra.TensorProduct.includeLeftRingHom_comp_algebraMap, GradedTensorProduct.auxEquiv_symm_one, LinearMap.adjoint_rTensor, GradedTensorProduct.auxEquiv_comm, TensorProduct.finsuppLeft_symm_apply_single, Algebra.TensorProduct.productMap_apply_tmul, LinearMap.rTensor_injective_iff_subtype, LinearMap.BilinForm.tensorDistrib_tmul, TensorProduct.AlgebraTensorModule.mk_apply, QuadraticForm.baseChange_tmul, PolynomialLaw.toFun_add_apply, KaehlerDifferential.End_equiv_aux, IsTensorProduct.equiv_symm_apply, TensorProduct.ext_iff_inner_left_threefold', RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_lTensor, LinearIsometry.lTensor_apply, finsuppTensorFinsupp'_apply_apply, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, LinearMap.mul'_apply, Rep.coinvariantsTensorFreeLEquiv_apply, AlgHom.coe_tensorEqualizer, TensorProduct.toIntegralClosure_mvPolynomial_bijective, TensorProduct.AlgebraTensorModule.rTensor_tmul, TensorProduct.prodLeft_symm_tmul, TensorProduct.ext_iff_inner_left_threefold, Module.FaithfullyFlat.rTensor_exact_iff_exact, Module.rankAtStalk_baseChange, KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale_apply, LinearEquiv.rTensor_refl_apply, Algebra.TensorProduct.lmul'_apply_tmul, MultilinearMap.domCoprod_alternization_coe, TensorProduct.inner_lid_lid, TensorProduct.tmul_eq_smul_one_tmul, LinearMap.BilinForm.tensorDistribEquiv_apply, Algebra.Generators.H1Cotangent.exact_map_δ, Algebra.Generators.H1Cotangent.δAux_monomial, TensorProduct.norm_comm, TensorProduct.map₂_apply_tmul, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, Algebra.TensorProduct.includeLeft_injective, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, TensorProduct.dualDistribEquivOfBasis_symm_apply, LieModule.weight_vector_multiplication, TensorProduct.leftComm_def, OrthonormalBasis.tensorProduct_repr_tmul_apply', LinearMap.rTensor_lTensor_comp_assoc_symm, RingHom.SurjectiveOnStalks.tensorProductMap, HopfAlgCat.whiskerRight_def, LinearMap.liftBaseChangeEquiv_symm_apply, Finsupp.comul_comp_lapply, Algebra.TensorProduct.equivFinsuppOfBasis_apply, Matrix.smul_kroneckerTMul, PrimeSpectrum.mem_image_comap_basicOpen, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, TensorProduct.gradedComm_algebraMap, TensorProduct.map_map_comp_assoc_eq, CommRingCat.isPushout_tensorProduct, Algebra.TensorProduct.opAlgEquiv_apply, CoalgCat.associator_def, PolynomialLaw.π_surjective, LinearMap.BilinForm.IsSymm.baseChange, TensorProduct.norm_assoc, TensorProduct.nnnorm_tmul, TensorProduct.lift.tmul', TensorProduct.assoc_tmul, Algebra.TensorProduct.equivFinsuppOfBasis_symm_apply, QuadraticForm.tensorRId_apply, MvPolynomial.rTensor_apply_X_tmul, QuadraticForm.comp_tensorLId_eq, Algebra.FiniteType.baseChangeAux_surj, TensorProduct.LinearIndepOn.tmul_of_flat_right, KaehlerDifferential.exact_mapBaseChange_map, CommAlgCat.binaryCofan_pt, LinearMap.tensorProductEnd_apply, ModuleCat.hom_inv_associator, Bialgebra.TensorProduct.assoc_tmul, KaehlerDifferential.tensorKaehlerEquiv_tmul, TensorProduct.inner_mapIncl_mapIncl, LinearMap.trace_eq_contract', Algebra.Generators.H1Cotangent.δAux_toAlgHom, Matrix.kroneckerAlgEquiv_apply, KaehlerDifferential.D_apply, InnerProductSpace.AlgebraOfCoalgebra.mul_def, TensorProduct.exists_finite_submodule_right_of_setFinite, lTensor_exact, TensorProduct.AlgebraTensorModule.leftComm_tmul, TensorProduct.tmul_zero, LieAlgebra.instIsSolvableTensorProduct, CoalgCat.MonoidalCategoryAux.tensorObj_comul, TensorProduct.gradedComm_tmul_of_zero, CoalgCat.comul_def, TensorProduct.equivFinsuppOfBasisRight_apply_tmul_apply, IsLocalization.Away.tensorRight, Module.End.rTensorAlgHom_apply_apply, Module.Flat.iff_lTensor_exact, PolynomialLaw.exists_lift, ModuleCat.MonoidalCategory.rightUnitor_def, CommRingCat.coproductCocone_inr, CommRing.Pic.mapAlgebra_apply, polyEquivTensor_symm_apply_tmul, AlgebraicGeometry.pullbackSpecIso_inv_fst'_assoc, KaehlerDifferential.one_smul_sub_smul_one_mem_ideal, TensorProduct.congr_tmul, IsAzumaya.mulLeftRight_comp_congr, Algebra.TensorProduct.algebraMap_def, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, MvPolynomial.finitePresentation_universalFactorizationMap, HopfAlgCat.associator_def, Module.Flat.rTensor_exact, KaehlerDifferential.range_mapBaseChange, Algebra.TensorProduct.includeRight_injective, Algebra.TensorProduct.isScalarTower_right, ModuleCat.MonoidalCategory.associator_def, MvPolynomial.tensorEquivSum_one_tmul_C, MultilinearMap.domCoprod_domDomCongr_sumCongr, LinearEquiv.rTensor_pow, Ideal.pi_tensorProductMk_quotient_surjective, TensorProduct.instStarModule, MvPolynomial.rTensor_apply_tmul, TensorProduct.AlgebraTensorModule.congr_mul, TensorProduct.nnnorm_map, Module.FaithfullyFlat.iff_exact_iff_rTensor_exact, AlgHom.mulLeftRight_apply, Algebra.TensorProduct.commRight_tmul, Module.Flat.iff_lTensor_preserves_injective_linearMap', LinearMap.lTensor_smul_action, transpose_dualTensorHom, TensorProduct.AlgebraTensorModule.assoc_tmul, Rep.indResAdjunction_counit_app_hom_hom, LinearMap.lTensor_neg, Submodule.coe_tensorSpanEquivSpan_apply_tmul, Algebra.TensorProduct.lmul'_comp_map, LieSubmodule.mem_baseChange_iff, LinearEquiv.baseChange_mul, QuadraticMap.associated_tmul, Submodule.FG.lTensor.directLimit_apply', IsAzumaya.bij, TensorProduct.directSumLeft_tmul_lof, Algebra.QuasiFinite.baseChange, Algebra.Generators.H1Cotangent.exact_δ_map, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_comp_inl, Rep.coindToInd_apply, kroneckerTMulLinearEquiv_one, MultilinearMap.domCoprod_alternization_eq, TensorProduct.AlgebraTensorModule.leftComm_symm_tmul, Algebra.TensorProduct.lift_comp_includeRight, TensorProduct.AlgebraTensorModule.rightComm_tmul, KaehlerDifferential.mapBaseChange_surjective, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, Module.FaithfullyFlat.iff_zero_iff_lTensor_zero, AdicCompletion.coe_ofTensorProductEquivOfFiniteNoetherian, PolynomialLaw.toFun_zero, TensorProduct.AlgebraTensorModule.assoc_symm_tmul, TensorProduct.algebraMap_gradedMul, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, MonoidAlgebra.tensorEquiv_symm_single, Submodule.FG.rTensor.directLimit_apply, TensorProduct.directLimitLeft_rTensor_of, TensorProduct.finsuppScalarRight_smul, LinearMap.toMvPolynomial_baseChange, CoalgCat.whiskerRight_def, Algebra.TensorProduct.map_id, TensorProduct.lid_symm_apply, IsTensorProduct.equiv_apply, Bialgebra.comul_algebraMap, TensorProduct.lift_compr₂ₛₗ, TensorProduct.tensorQuotEquivQuotSMul_tmul_mk, AlgCat.hom_hom_rightUnitor, finsuppTensorFinsupp_single, TensorProduct.counit_tmul, Algebra.TensorProduct.isField_of_isAlgebraic, TensorProduct.toLinearEquiv_congrIsometry, PolynomialLaw.zero_def, TensorProduct.lid_tmul, Algebra.FormallySmooth.instTensorProduct, SemimoduleCat.hom_inv_leftUnitor, FGModuleCat.FGModuleCatCoevaluation_apply_one, LinearMap.BilinMap.baseChange_tmul, Module.Flat.eqLocus_lTensor_eq, QuadraticForm.tmul_tensorAssoc_apply, TensorProduct.exists_finite_submodule_left_of_finite, LinearMap.intrinsicStar_rTensor, Algebra.FormallyEtale.instTensorProduct, TensorProduct.piRight_symm_apply, Algebra.TensorProduct.congr_toLinearEquiv, AdicCompletion.ofTensorProductEquivOfFiniteNoetherian_symm_of, TensorProduct.gradedComm_one, TensorProduct.toLinearEquiv_commIsometry, TensorProduct.lift.tmul, finsuppTensorFinsupp'_symm_single_eq_single_one_tmul, TensorProduct.lTensorHomToHomLTensor_apply, Matrix.single_kroneckerTMul_single, BialgCat.tensorHom_def, Algebra.TensorProduct.tmul_mul_tmul, Coalgebra.sum_counit_tmul_map_eq, TensorProduct.AlgebraTensorModule.cancelBaseChange_tmul, Module.Invertible.instTensorProduct_2, Submodule.baseChange_bot, Subalgebra.mulMap'_surjective, Submodule.comm_trans_rTensorOne, LinearMap.mulRight_tmul, LinearMap.smul_lTensor, TensorProduct.intrinsicStar_map, AdicCompletion.ofTensorProduct_bijective_of_finite_of_isNoetherian, Algebra.TensorProduct.instFree, TensorProduct.LieModule.map_tmul, Submodule.exists_fg_le_subset_range_rTensor_subtype, TensorProduct.rTensor_injective_of_forall_vanishesTrivially, ModuleCat.hom_hom_leftUnitor, LinearMap.map_comp_rTensor, LinearMap.IsSymm.tmul, TensorProduct.isPushout, DFinsupp.comul_comp_lapply, Module.rankAtStalk_eq_finrank_tensorProduct, TensorProduct.finsuppScalarRight_apply_tmul_apply, SemimoduleCat.MonoidalCategory.tensorμ_apply, Algebra.TensorProduct.leftComm_toLinearEquiv, LinearEquiv.baseChange_tmul, QuadraticForm.tmul_tensorComm_apply, Ideal.ResidueField.exists_smul_eq_tmul_one, kroneckerLinearEquiv_symm_kronecker, TensorProduct.finsuppLeft_apply, ModuleCat.hom_hom_rightUnitor, LinearMap.comm_comp_lTensor_comp_comm_eq, TensorProduct.mapBilinear_apply, finsuppTensorFinsuppRid_symm_single_smul, TensorProduct.prodRight_symm_tmul, TensorProduct.ext_iff_inner_right, TensorProduct.exists_finsupp_left, TensorProduct.gradedComm_symm, QuadraticForm.tensorLId_toLinearEquiv, Algebra.TensorProduct.congr_apply, TensorProduct.AlgebraTensorModule.dualDistrib_apply, Coalgebra.IsCocomm.comm_comp_comul, Algebra.TensorProduct.toLinearEquiv_tensorTensorTensorComm, Algebra.Generators.snd_comp_cotangentCompLocalizationAwayEquiv, Module.Flat.instTensorProduct, GradedTensorProduct.auxEquiv_mul, QuadraticForm.tmul_tensorRId_apply, TensorProduct.range_map_mono, TensorProduct.piRight_symm_single, Submodule.lTensorOne'_tmul, rank_tensorProduct, MvPolynomial.finite_universalFactorizationMap, MvPolynomial.rTensorAlgHom_toLinearMap, Submodule.rTensorOne'_tmul_one, coe_polyEquivTensor'_symm, baseChange_ext_iff, Subbimodule.coe_mk, Prod.comul_apply, Rep.finsuppTensorRight_hom_hom, QuotSMulTop.equivQuotTensor_naturality, Submodule.rTensorOne'_tmul, Matrix.conjTranspose_kroneckerTMul, MvPolynomial.universalFactorizationMapPresentation_map, Module.Invertible.rTensor_injective_iff, Algebra.Extension.cotangentComplexBaseChange_eq_lTensor_cotangentComplex, Algebra.TensorProduct.basisAux_tmul, TensorProduct.exists_finite_submodule_right_of_setFinite', TensorProduct.AlgebraTensorModule.map_add_left, TensorProduct.AlgebraTensorModule.uncurry_apply, TensorProduct.map_comm, MvPolynomial.algebraTensorAlgEquiv_symm_X, LinearEquiv.congr_trans_rTensor, AlternatingMap.domCoprod'_apply, Submodule.LinearDisjoint.injective, Submodule.baseChange_eq_span, tensorKaehlerQuotKerSqEquiv_symm_tmul_D, Algebra.IsStandardSmooth.baseChange, Matrix.kroneckerTMulAlgEquiv_symm_apply, coe_polyEquivTensor', Algebra.Unramified.baseChange, TensorProduct.AlgebraTensorModule.coe_lTensor, Coalgebra.rTensor_counit_comp_comul, Matrix.kroneckerTMulStarAlgEquiv_apply, Algebra.TensorProduct.includeRight_bijective, toMatrix_dualTensorHom, LinearIndependent.tmul_of_flat_left, Algebra.Generators.H1Cotangent.δAux_ofComp, Matrix.diagonal_kroneckerTMul_diagonal, TensorProduct.AlgebraTensorModule.homTensorHomMap_apply, Algebra.TensorProduct.nontrivial_of_algebraMap_injective_of_isDomain, PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux, Submodule.injective_tensorToSpan, AlgebraicGeometry.pullbackSpecIso_inv_fst, AlgCat.hom_inv_leftUnitor, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, AdicCompletion.ofTensorProduct_bijective_of_pi_of_fintype, RCLike.inner_tmul_eq, LinearMap.map_comp_lTensor, LieModule.instIsNilpotentTensor, Coalgebra.TensorProduct.map_tmul, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, Matrix.diagonal_kroneckerTMul, CoalgHomClass.map_comp_comul, SemimoduleCat.hom_inv_associator, Module.Relations.Solution.IsPresentation.tensor, Module.Basis.baseChange_end, TensorProduct.lid'_apply_tmul, Algebra.TensorProduct.liftEquiv_apply, LinearEquiv.rTensor_refl, KaehlerDifferential.instSMulCommClassTensorProduct_1, TensorProduct.map_smul_right, TensorProduct.enorm_tmul, Module.Basis.baseChange_apply, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, Algebra.TensorProduct.not_isField_of_transcendental, Module.rankAtStalk_tensorProduct, LinearMap.lTensor_mul, Algebra.TensorProduct.productMap_range, Submodule.mulRightMap_eq_mulMap_comp, Algebra.TensorProduct.basis_repr_symm_apply', TensorProduct.inner_assoc_assoc, kroneckerTMulLinearEquiv_mul, groupHomology.H1AddEquivOfIsTrivial_single, LinearEquiv.baseChange_zpow, kroneckerTMulLinearEquiv_symm_kroneckerTMul, ModuleCat.MonoidalCategory.tensorμ_eq_tensorTensorTensorComm, Module.rankAtStalk_tensorProduct_of_isScalarTower, Module.Free.tensor, Bialgebra.TensorProduct.rid_toAlgEquiv, TensorProduct.gradedMul_one, QuadraticForm.tensorComm_toLinearEquiv, Algebra.TensorProduct.productMap_eq_comp_map, PointedCone.tmul_subset_maxTensorProduct, CliffordAlgebra.ofBaseChange_tmul_ι, KaehlerDifferential.tensorKaehlerEquiv_left_inv, QuadraticModuleCat.toIsometry_hom_leftUnitor, Algebra.TensorProduct.rid_tmul, Submodule.rTensorOne_tmul, IsLocalizedModule.rTensor, Algebra.TensorProduct.lmul'_comp_includeRight, QuadraticModuleCat.toIsometry_hom_rightUnitor, rTensor.inverse_of_rightInverse_comp_rTensor, TensorProduct.zero_tmul, Module.Presentation.tensor_G, IsBaseChange.equiv_symm_apply, TensorProduct.congr_symm_tmul, Algebra.pushoutDesc_apply, CommRingCat.coproductCocone_pt, Algebra.TensorProduct.cancelBaseChange_tmul, Algebra.TensorProduct.map_comp_id, Submodule.coe_mulMap_comp_eq, TensorProduct.AlgebraTensorModule.curry_apply, QuadraticForm.tensorLId_symm_apply, starLinearEquiv_tensor, Algebra.TensorProduct.mul_one, TensorProduct.exists_finite_submodule_left_of_finite', TensorProduct.sum_tmul, TensorProduct.finsuppScalarRight_symm_apply_single, LinearIsometryEquiv.toLinearEquiv_lTensor, AlgCat.hom_hom_leftUnitor, TensorProduct.tmul_sum, Algebra.TensorProduct.mk_one_injective_of_isScalarTower, Module.Flat.iff_lTensor_injective, CliffordAlgebra.ofBaseChangeAux_ι, Ideal.ker_tensorProductMk_quotient, LinearEquiv.rTensor_symm_tmul, Bialgebra.comul_mul, CommAlgCat.coe_tensorObj, TensorProduct.AlgebraTensorModule.mapBilinear_apply, TensorProduct.piRightHom_tmul, LinearMap.lTensor_comm, TensorProduct.quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, tensorKaehlerQuotKerSqEquiv_tmul_D, HopfAlgebra.mul_antipode_rTensor_comul, LieSubmodule.lie_baseChange, TensorProduct.tensorQuotientEquiv_apply_mk_tmul, LinearMap.lTensor_id, TensorProduct.exists_finite_submodule_of_finite, Algebra.FormallyUnramified.one_tmul_sub_tmul_one_mul_elem, QuadraticForm.tensorDistrib_tmul, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left, LieModule.toModuleHom_apply, TensorProduct.map_one, GradedTensorProduct.mulHom_apply, rTensor.inverse_comp_rTensor, PointedCone.minTensorProduct_le_maxTensorProduct, PolyEquivTensor.invFun_add, TensorProduct.directSumRight_tmul_lof, OrthonormalBasis.tensorProduct_apply', Module.Invertible.rTensor_bijective_iff, MultilinearMap.domCoprod'_apply, ModuleCat.hom_inv_rightUnitor, MvPolynomial.universalFactorizationMapPresentation_relation, Equiv.tensorProductAssoc_def, Algebra.TensorProduct.congr_refl, LinearMap.map_rTensor, ModuleCat.ExtendScalars.smul_tmul, QuadraticForm.tensorComm_apply, Subbimodule.coe_toSubbimoduleInt, Module.Flat.linearIndependent_one_tmul, TensorProduct.exists_multiset, Module.Flat.iff_rTensor_exact', LieAlgebra.derivedSeries_baseChange, Algebra.Generators.Cotangent.exact, kroneckerTMulLinearEquiv_tmul, LinearMap.rTensor_comp_comm, Subalgebra.rTensorBot_tmul_one, TensorProduct.AlgebraTensorModule.restrictScalars_rTensor, QuadraticForm.tmul_comp_tensorMap, Module.Dual.baseChange_apply_tmul, LinearMap.rTensor_baseChange, Algebra.IsPushout.cancelBaseChangeAux_symm_tmul, Commute.tmul, Algebra.TensorProduct.map_surjective, TensorProduct.directSumLeft_symm_lof_tmul, BialgCat.whiskerRight_def, IsAzumaya.coe_tensorEquivEnd, AlgHom.tensorEqualizerEquiv_apply, Matrix.kroneckerTMul_add, PointedCone.tmul_subset_minTensorProduct, rTensor_mkQ, TensorProduct.lift_comp_map, TensorProduct.sum_tmul_eq_zero_of_vanishesTrivially, TensorProduct.tensorQuotEquivQuotSMul_symm_mk, Module.Relations.Solution.tensor_var, CommAlgCat.binaryCofan_inl, Module.Flat.tensorProduct_mapIncl_injective_of_left, TensorProduct.comm_trans_comm, PolynomialLaw.add_def_apply, QuadraticForm.tensorAssoc_symm_apply, Coalgebra.coassoc, MonoidAlgebra.tensorEquiv_tmul, Module.mem_freeLocus_iff_tensor, TensorProduct.AlgebraTensorModule.map_add_right, TensorProduct.ite_tmul, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, TensorProduct.Algebra.linearMap_comp_mul', TensorProduct.map_injective_of_flat_flat, Algebra.Smooth.baseChange, Module.Flat.iff_lTensor_injectiveₛ, LieAlgebra.ExtendScalars.bracket_tmul, Algebra.TensorProduct.comm_comp_includeRight, TensorProduct.toLinearMap_congr, CliffordAlgebra.toBaseChange_ofBaseChange, LinearMap.lTensor_comp_rTensor, TensorProduct.rid_tmul, LinearMap.lTensor_zero, Submodule.tmul_mem_baseChange_of_mem, matrixEquivTensor_apply_single, CharacterModule.homEquiv_symm_apply_apply_apply, QuadraticModuleCat.toIsometry_inv_rightUnitor, LinearMap.adjoint_lTensor, Algebra.TensorProduct.cancelBaseChange_symm_tmul, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, TensorProduct.AlgebraTensorModule.map_one, MvPolynomial.coeff_rTensorAlgHom_tmul, PiTensorProduct.tmulEquivDep_symm_apply, Submodule.rTensorOne_tmul_one, DFinsupp.comul_comp_lsingle, Algebra.TensorProduct.comm_comp_includeLeft, Subbimodule.coe_toSubbimoduleNat, LinearMap.lTensor_comp_mk, KaehlerDifferential.instSMulCommClassTensorProduct, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Module.Flat.baseChange, Module.Invertible.rTensorInv_leftInverse, TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective, MatrixEquivTensor.invFun_smul, TensorProduct.single_tmul, finsuppTensorFinsuppRid_single_tmul_single, IsLocalRing.split_injective_iff_lTensor_residueField_injective, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, PolynomialLaw.isCompat, Algebra.Extension.contangentEquiv_tmul, PolynomialLaw.add_def, RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_rTensor, TensorProduct.finsuppScalarLeft_apply_tmul_apply, TensorProduct.inner_comm_comm, LinearMap.polyCharpolyAux_baseChange, ModuleCat.MonoidalCategory.tensorObj, LinearMap.coe_rTensorHom, Algebra.TensorProduct.assoc_toLinearEquiv, LinearMap.baseChange_sub, Coalgebra.lift_lsmul_comp_counit_comp_comul, Algebra.TensorProduct.assoc_symm_tmul, Algebra.TensorProduct.opAlgEquiv_symm_apply, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, matrixEquivTensor_apply_symm, TensorProduct.map_mul, LieSubmodule.tmul_mem_baseChange_of_mem, QuadraticForm.tensorRId_toLinearEquiv, Bialgebra.TensorProduct.map_tmul, PolynomialLaw.toFun_smul, Subalgebra.mulMap_bot_right_eq, groupHomology.H1AddEquivOfIsTrivial_symm_apply, PiTensorProduct.tmulEquivDep_apply, Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, MatrixEquivTensor.left_inv, TensorProduct.LieModule.lift_apply, CoalgCat.MonoidalCategoryAux.counit_tensorObj, TensorProduct.isBaseChange, TensorProduct.LieModule.lie_tmul_right, LaurentPolynomial.comul_C, TensorProduct.assocIsometry_apply, CliffordAlgebra.toBaseChange_comp_reverseOp, Finsupp.comul_single, HopfAlgebra.mul_antipode_rTensor_comul_apply, PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable, DirectedSystem.lTensor, GradedTensorProduct.auxEquiv_tmul, KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange, Subalgebra.lTensorBot_symm_apply, TensorProduct.add_smul, Algebra.Etale.exists_subalgebra_fg, TensorProduct.AlgebraTensorModule.lTensor_comp, LinearIsometryEquiv.rTensor_apply, groupHomology.H1ToTensorOfIsTrivial_H1π_single, homTensorHomEquiv_toLinearMap, TensorProduct.map_bijective, KaehlerDifferential.submodule_span_range_eq_ideal, LinearMap.baseChange_neg, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, TensorProduct.SMul.aux_of, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, Algebra.TensorProduct.map_range, Module.finrank_tensorProduct, TensorProduct.gradedComm_of_zero_tmul, Algebra.TensorProduct.tmul_pow, ModuleCat.MonoidalCategory.tensorμ_apply, TensorProduct.isScalarTower_left, IsBaseChange.endHom_apply, LinearMap.mul''_apply, Module.Invertible.rTensorInv_injective, TensorProduct.AlgebraTensorModule.lTensor_mul, Algebra.TensorProduct.map_comp_includeRight, TensorProduct.piScalarRight_symm_single, MvPolynomial.ker_eval₂Hom_universalFactorizationMap, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, TensorProduct.sub_tmul, Algebra.TensorProduct.one_mul, TensorProduct.map₂_mk_top_top_eq_top, TensorPower.gMul_def, Module.Flat.iff_rTensor_exact, Subalgebra.tmul_mem_baseChange, LinearMap.baseChange_zero, SemimoduleCat.MonoidalCategory.associator_inv_apply, CommAlgCat.braiding_inv_hom, rTensor_exact, Algebra.Smooth.exists_finiteType, LinearMap.polyCharpolyAux_map_aeval, TensorProduct.directSumLeft_tmul, Algebra.TensorProduct.piRightHom_one, LinearMap.liftBaseChange_tmul, Submodule.mulMap_one_left_eq, TensorProduct.map_comp, TensorProduct.quotTensorEquivQuotSMul_symm_mk, Algebra.IsPushout.equiv_tmul, LinearMap.rTensor_surjective, AddMonoidAlgebra.tensorEquiv_tmul, BialgCat.tensorObj_def, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, CommAlgCat.associator_inv_hom, ModuleCat.ihom_coev_app, IsBaseChange.toDual_apply, TensorProduct.instIsCocomm, LinearIsometry.toLinearMap_rTensor, PolyEquivTensor.toFunLinear_tmul_apply, TensorProduct.smul_tmul', TensorProduct.exists_finite_submodule_of_setFinite', CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, Module.FaithfullyFlat.one_tmul_eq_zero_iff, DirectedSystem.rTensor, Algebra.TensorProduct.tensorTensorTensorComm_toLinearEquiv, Algebra.Generators.H1Cotangent.exact_map_δ', AlgebraicGeometry.pullbackSpecIso_inv_fst_assoc, TensorProduct.eq_repr_basis_left, LinearMap.lift_lsmul_mul_eq_lsmul_lift_lsmul, Module.FaithfullyFlat.zero_iff_lTensor_zero, LinearMap.lTensor_bij_iff_rTensor_bij, Submodule.mulMap_comm_of_commute, Algebra.TensorProduct.ext_iff, TensorProduct.AlgebraTensorModule.map_mul, QuadraticForm.tmul_tensorLId_apply, MvPolynomial.rTensor_symm_apply_single, QuadraticForm.tensorLId_apply, ModuleCat.hom_hom_associator, IsLocalization.bijective_linearMap_mul', LinearMap.lTensor_comp_apply, LinearIsometryEquiv.symm_rTensor, LinearMap.BilinForm.tensorDistribEquiv_tmul, LinearMap.trace_tensorProduct', TensorProduct.commIsometry_symm, TensorProduct.leftComm_symm_tmul, KaehlerDifferential.D_tensorProductTo, LinearEquiv.lTensor_refl, Rep.finsuppTensorRight_inv_hom, QuotSMulTop.equivQuotTensor_naturality_mk, Submodule.mulMap_eq_mul'_comp_mapIncl, Module.Flat.iff_lTensor_preserves_injective_linearMapₛ, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, Module.Invertible.lTensor_injective_iff, AddMonoidAlgebra.tensorEquiv_symm_single, LieModule.toEnd_baseChange, LinearEquiv.baseChange_inv, Derivation.tensorProductTo_mul, TensorProduct.assoc_tensor'', contractLeft_apply, LinearMap.BilinMap.tensorDistrib_tmul, IsLocalization.Away.tensor, LineDeriv.tensorLineDerivTwo_eq_lineDerivOp_lineDerivOp, QuadraticForm.comp_tensorRId_eq, HopfAlgCat.tensorHom_def, TensorProduct.LieModule.toLinearMap_map, AdicCompletion.tensor_map_id_left_eq_map, TensorProduct.range_map_eq_span_tmul, PolynomialLaw.toFun_add, Algebra.Generators.CotangentSpace.exact, Algebra.Generators.H1Cotangent.δAux_X, Algebra.TensorProduct.comm_symm_tmul, Coalgebra.sum_tmul_tmul_eq, CharacterModule.dual_rTensor_conj_homEquiv, TensorProduct.equivFinsuppOfBasisRight_apply, Submodule.mulLeftMap_eq_mulMap_comp, MonoidAlgebra.scalarTensorEquiv_symm_single, TensorProduct.counit_def, PointedCone.minTensorProduct_comm, LinearMap.mulLeft_tmul, Subbimodule.coe_toSubmodule, Matrix.add_kroneckerTMul, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_symm_tmul, TensorProduct.directSum_symm_lof_tmul, TensorProduct.LinearIndepOn.tmul_of_flat_left, Module.FaithfullyFlat.rTensor_nontrivial, TensorProduct.tmul_single, CoalgCat.whiskerLeft_def, Module.FaithfullyFlat.tensorProduct_mk_injective, MultilinearMap.domCoprod_apply, MonoidAlgebra.comul_single, Algebra.FormallyUnramified.base_change, PolyEquivTensor.invFun_monomial, Subalgebra.linearDisjoint_iff_injective, Representation.smul_tprod_one_asModule, rTensorHomEquivHomRTensor_toLinearMap, LinearMap.lTensor_injective_of_exact_of_flat, AdicCompletion.ofTensorProduct_tmul, PolynomialLaw.neg_def, LinearMap.intrinsicStar_lTensor, MvPolynomial.rTensor_apply_monomial_tmul, LinearIndependent.tmul_of_isDomain, Subbimodule.coe_toSubmodule', PiTensorProduct.tmulEquiv_apply, Module.Dual.baseChange_baseChange, TensorProduct.dualDistribInvOfBasis_apply, Pi.comul_coe_finsupp, isNilpotent_tensor_residueField_iff, BialgHomClass.map_comp_comulAlgHom, TensorProduct.lift_mk, dualTensorHom_prodMap_zero, PolyEquivTensor.toFunLinear_one_tmul_one, MultilinearMap.domCoprod_alternization, LinearMap.range_liftBaseChange, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, TensorProduct.enorm_assoc, NonUnitalAlgHom.comp_mul', IsLocalization.tmul_mk', TensorProduct.AlgebraTensorModule.rTensor_mul, TensorProduct.quotientTensorEquiv_apply_tmul_mk, LinearEquiv.coe_rTensor_symm, CommRingCat.coproductCoconeIsColimit_desc, Algebra.TensorProduct.piRight_tmul, AlgebraicGeometry.pullbackSpecIso_hom_fst, Algebra.TensorProduct.mul_assoc, SemimoduleCat.hom_hom_associator, TensorProduct.map_zero_left, TensorProduct.dualDistrib_dualDistribInvOfBasis_left_inverse, PolyEquivTensor.left_inv, CliffordAlgebra.equivBaseChange_apply, Submodule.mulMap'_surjective, AlgCat.instMonoidalCategory.tensorObj_carrier, SemimoduleCat.MonoidalCategory.leftUnitor_naturality, TensorProduct.rightComm_tmul, TensorProduct.exists_finsupp_right, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, LinearMap.rTensor_map, dualTensorHomEquivOfBasis_toLinearMap, TensorProduct.finsuppScalarLeft_apply_tmul, TensorProduct.directSumRight_tmul, TensorProduct.gradedComm_tmul_algebraMap, Module.mem_support_iff_nontrivial_residueField_tensorProduct, TensorProduct.dist_tmul_le, Module.Invertible.rTensor_surjective_iff, Subalgebra.lTensorBot_tmul, MvPolynomial.tensorEquivSum_X_tmul_X, groupHomology.H1AddEquivOfIsTrivial_apply, TensorProduct.congr_mul, TensorProduct.norm_lid, SemimoduleCat.MonoidalCategory.tensorμ_eq_tensorTensorTensorComm, Rep.finsuppTensorLeft_inv_hom, TensorProduct.toLinearEquiv_assocIsometry, LinearMap.rTensor_comp, Module.Presentation.tensor_relation, LinearMap.rTensor_zero, LinearEquiv.rTensor_trans_apply, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, MvPolynomial.coeff_rTensorAlgHom_monomial_tmul, TensorProduct.toIntegralClosure_injective_of_flat, TensorProduct.AlgebraTensorModule.map_smul_right, LinearEquiv.dilatransvection.baseChange, MvPolynomial.algebraTensorAlgEquiv_symm_map, TensorProduct.rid_symm_apply, Algebra.TensorProduct.productMap_right_apply, Bialgebra.TensorProduct.lid_toAlgEquiv, Module.End.baseChangeHom_apply_apply, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, MvPolynomial.tensorEquivSum_C_tmul_one, TensorProduct.AlgebraTensorModule.map_comp, Subbimodule.coe_baseChange, Module.Basis.baseChange_repr_tmul, TensorProduct.nnnorm_assoc, Matrix.kroneckerAlgEquiv_symm_apply, Coalgebra.TensorProduct.assoc_tmul, TensorProduct.AlgebraTensorModule.lift_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom, TensorProduct.comul_tmul, Algebra.TensorProduct.basis_repr_symm_apply, Ideal.pi_mkQ_rTensor, finsuppTensorFinsuppLid_apply_apply, Prod.comul_comp_fst, polyEquivTensor_apply, TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_symm_tmul, Algebra.Presentation.algebraTensorAlgEquiv_symm_relation, TensorProduct.lcurry_apply, TensorProduct.curry_apply, Subalgebra.LinearDisjoint.val_mulMap_tmul, rTensor.inverse_apply, Submodule.mulMap_map_comp_eq, dualTensorHomEquivOfBasis_symm_cancel_left, TensorProduct.map_tmul, TensorProduct.mapIsometry_apply, Matrix.kroneckerTMul_smul, TensorProduct.smul_tmul_smul, Module.Invertible.rTensorEquiv_symm_apply_apply, Algebra.TensorProduct.right_isScalarTower, TensorProduct.comul_def, Algebra.TensorProduct.algebraMap_apply', Module.Flat.iff_lift_lsmul_comp_subtype_injective, Algebra.TensorProduct.Algebra.TensorProduct.commRight_symm_tmul, Subalgebra.mulMap_range, TensorProduct.AlgebraTensorModule.congr_one, Coalgebra.TensorProduct.lid_toLinearEquiv, Algebra.instIsStandardOpenImmersionTensorProduct, TensorProduct.directSumRight'_restrict, Algebra.TensorProduct.lift_tmul, TensorProduct.AlgebraTensorModule.cancelBaseChange_symm_tmul, Submodule.FG.lTensor.directLimit_apply, RingHom.Finite.tensorProductMap, TensorProduct.lift.equiv_symm_apply, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, TensorProduct.toLinearMap_mapIsometry, Algebra.Etale.baseChange, Subalgebra.rTensorBot_symm_apply, AlternatingMap.domCoprod.summand_eq_zero_of_smul_invariant, LinearMap.map_lTensor, TensorProduct.enorm_map, Prod.comul_comp_snd, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_tmul, TensorProduct.mapOfCompatibleSMul_tmul, Rep.linearization_δ_hom, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, KaehlerDifferential.derivationTensorProduct_algebraMap, Pi.comul_comp_proj, AdicCompletion.ofTensorProductEquivOfFiniteNoetherian_apply, Algebra.TensorProduct.lTensor_ker, TensorProduct.AlgebraTensorModule.rTensor_id, Matrix.kroneckerTMulBilinear_apply, TensorProduct.map_map_assoc, KaehlerDifferential.tensorProductTo_surjective, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, PointedCone.maxTensorProduct_comm, Coalgebra.rTensor_counit_comul, TensorProduct.commIsometry_apply, finsuppTensorFinsupp_symm_single, LinearMap.trace_tensorProduct, comp_dualTensorHom, Submodule.mulMap_comp_lTensor, TensorProduct.congrIsometry_symm, Coalgebra.TensorProduct.assoc_symm_tmul, MvPolynomial.pderiv_inr_universalFactorizationMap_X, Algebra.TensorProduct.natCast_def, Algebra.TensorProduct.tensorTensorTensorComm_tmul, TensorProduct.map_convMul_map, LinearMap.rTensor_exact_iff_lTensor_exact, TensorProduct.gradedMul_algebraMap, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, Matrix.trace_kroneckerTMul, IsIntegral.tmul, Derivation.tensorProductTo_tmul, Module.Flat.iff_rTensor_preserves_injective_linearMapₛ, IntermediateField.LinearDisjoint.isField_of_isAlgebraic', TensorProduct.homTensorHomMap_apply, Submodule.lTensorOne_symm_apply, LinearMap.tensorEqLocus_tmul, TensorProduct.tmul_add, AddMonoidAlgebra.scalarTensorEquiv_symm_single, Submodule.tensorToSpan_apply_tmul, TensorProduct.gradedCommAux_comp_gradedCommAux, Algebra.baseChange_lmul, QuadraticForm.tensorAssoc_apply, TensorProduct.tensorTensorTensorComm_trans_tensorTensorTensorComm, finsuppTensorFinsuppRid_apply_apply, TensorProduct.toLinearMap_symm_lid, CoalgCat.MonoidalCategoryAux.comul_tensorObj, LinearMap.rTensor_comp_apply, Rep.finsuppTensorLeft_hom_hom, TensorProduct.tmul_of_gradedMul_of_tmul, Matrix.mul_kroneckerTMul_mul, LinearEquiv.coe_lTensor_symm, Submodule.lTensorOne'_one_tmul, Algebra.TensorProduct.lift_comp_includeRight', map_dualTensorHom, PolynomialLaw.smul_def_apply, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, TensorProduct.exists_finite_submodule_right_of_finite, Bialgebra.comul_pow, Algebra.TensorProduct.equivPiOfFiniteBasis_symm_apply, TensorProduct.AlgebraTensorModule.lTensor_one, TensorProduct.finsuppRight_symm_apply_single, TensorProduct.gradedComm_one_tmul, ModuleCat.MonoidalCategory.leftUnitor_def, LinearEquiv.comm_trans_rTensor_trans_comm_eq, TensorProduct.prodRight_tmul, KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_mk, Algebra.Generators.H1Cotangent.δ_eq_δAux, CliffordAlgebra.toBaseChange_involute, PolynomialLaw.toFun_neg, IsBaseChange.equiv_tmul, Bialgebra.comul_one, LinearMap.tensorProduct_apply, IsAddUnit.tmul_left, Rep.coinvariantsTensorMk_apply, Algebra.Generators.snd_cotangentCompLocalizationAwayEquiv, AlgebraicGeometry.pullbackSpecIso_hom_base_assoc, finsuppTensorFinsuppLid_single_tmul_single, Submodule.exists_fg_le_subset_range_rTensor_inclusion, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, Matrix.kroneckerTMulAlgEquiv_apply, Matrix.kroneckerTMul_diagonal, Rep.indMap_hom, MvPolynomial.algebraTensorAlgEquiv_tmul, Algebra.TensorProduct.comm_tmul, CharacterModule.uncurry_apply, Bialgebra.TensorProduct.assoc_toCoalgEquiv, Rep.homEquiv_symm_apply_hom, PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable, ModuleCat.extendScalarsComp_hom_app_one_tmul, Module.Invertible.lTensor_surjective_iff, IsLocalization.tensorRight, contractRight_apply, LinearMap.trace_eq_contract_of_basis, GradedTensorProduct.of_symm_of, KaehlerDifferential.span_range_eq_ideal, TensorProduct.liftAux.smul, Algebra.TensorProduct.lmul'_comp_includeLeft, Coalgebra.TensorProduct.rid_symm_apply, MatrixEquivTensor.right_inv, Algebra.TensorProduct.intCast_def, Algebra.Generators.CotangentSpace.map_toComp_injective, LinearMap.rTensor_range, TensorProduct.mk_surjective, Module.End.lTensorAlgHom_apply_apply, IsLocalization.tensor, Representation.ind_mk, TensorProduct.exists_finite_submodule_right_of_finite', TensorProduct.add_tmul, ModuleCat.MonoidalCategory.tensorObj_def, TensorProduct.tensorTensorTensorAssoc_symm_tmul, TensorProduct.finsuppLeft_apply_tmul, PrimeSpectrum.continuous_tensorProductTo, Algebra.TensorProduct.opAlgEquiv_tmul, Module.Projective.tensorProduct, Algebra.TensorProduct.rid_toLinearEquiv, TensorProduct.AlgebraTensorModule.map_tmul, Bialgebra.TensorProduct.lid_toCoalgEquiv, PolynomialLaw.isCompat_apply', Module.Invertible.bijective, TensorProduct.lidOfCompatibleSMul_tmul, Module.Invertible.lTensor_bijective_iff, LinearIsometryEquiv.toLinearIsometry_rTensor, LineDeriv.tensorLineDerivTwo_canonicalCovariantTensor_eq_sum, Pi.comul_single, Coalgebra.coassoc_apply, AlgebraicGeometry.pullbackSpecIso_hom_fst'_assoc, Coalgebra.TensorProduct.rid_toLinearEquiv, Module.Flat.iff_flat_tensorProduct, HopfAlgebra.mul_antipode_lTensor_comul_apply, CoalgCat.rightUnitor_def, Submodule.mulMap_comp_map_inclusion, TensorProduct.equivFinsuppOfBasisRight_symm, Bialgebra.TensorProduct.rid_symm_apply, LinearEquiv.lTensor_trans_apply, LinearMap.liftBaseChange_comp, MatrixEquivTensor.invFun_zero, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, CoalgCat.tensorObj_carrier, Submodule.lTensorOne_tmul, HopfAlgCat.tensorObj_carrier, TensorProduct.norm_tmul, TensorProduct.directLimitLeft_tmul_of, MvPolynomial.aeval_one_tmul, MulOpposite.comul_def, Module.Flat.iff_rTensor_injectiveₛ, Subalgebra.comm_trans_lTensorBot, Submodule.LinearDisjoint.val_mulMap_tmul, Module.FaithfullyFlat.iff_flat_and_rTensor_faithful, Coalgebra.coassoc_symm, AlgebraicGeometry.pullbackSpecIso_inv_fst', TensorProduct.lid'_symm_apply, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, IsAlgebraic.tmul, Rep.ihom_coev_app_hom, LaurentPolynomial.comul_C_mul_T, Prod.comul_comp_inl, HopfAlgCat.leftUnitor_def, Algebra.TensorProduct.comm_comp_map, TensorProduct.tmul_ite, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, IsSMulRegular.rTensor, Matrix.toLinearEquiv_kroneckerAlgEquiv, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, TensorProduct.AlgebraTensorModule.curry_injective, LinearMap.lTensor_comp, PolynomialLaw.comp_toFun', LinearMap.rid_comp_lTensor, TensorProduct.nnnorm_comm, Module.flat_iff, MvPolynomial.tensorEquivSum_one_tmul_X, FGModuleCat.FGModuleCatEvaluation_apply', Matrix.det_kroneckerTMul, TensorProduct.map_ker, CommAlgCat.binaryCofan_inr, Submodule.exists_fg_le_eq_rTensor_subtype, TensorProduct.piScalarRight_apply, TensorProduct.exists_finset, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, LinearEquiv.lTensor_symm_tmul, Coalgebra.lTensor_counit_comp_comul, ModuleCat.hom_inv_leftUnitor, TensorProduct.exists_finite_submodule_of_setFinite, LinearEquiv.baseChange_pow, TensorProduct.exists_finite_submodule_left_of_setFinite', Algebra.H1Cotangent.exact_map_δ, CliffordAlgebra.ofBaseChange_tmul_one, MvPolynomial.universalFactorizationMap_freeMonic, Coalgebra.TensorProduct.rid_tmul, Algebra.Generators.H1Cotangent.δ_comp_equiv, PolynomialLaw.id_apply', MvPolynomial.universalFactorizationMapPresentation_val, TensorProduct.gradedCommAux_lof_tmul, Algebra.TensorProduct.prodRight_tmul, Algebra.TensorProduct.prodRight_tmul_snd, AlgebraicGeometry.diagonal_Spec_map, TensorProduct.directLimitLeft_symm_of_tmul, MvPolynomial.universalFactorizationMapPresentation_σ', TensorProduct.norm_map, Algebra.TensorProduct.map_restrictScalars_comp_includeRight, LieAlgebra.derivedSeriesOfIdeal_baseChange, CommAlgCat.associator_hom_hom, Algebra.TensorProduct.liftEquiv_symm_apply_coe, Algebra.IsPushout.equiv_symm_algebraMap_right, Bialgebra.TensorProduct.rid_tmul, Submodule.map_range_rTensor_subtype_lid, QuadraticMap.Isometry.tmul_apply, LinearEquiv.baseChange_symm, LinearMap.mul'_tensor, CoalgCat.tensorObj_instCoalgebra, CliffordAlgebra.toBaseChange_ι, PointedCone.tmul_mem_minTensorProduct, Bialgebra.TensorProduct.lid_tmul, TensorProduct.comm_tmul, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, TensorProduct.dualDistrib_apply, LinearMap.lTensor_pow, Module.Invertible.instTensorProduct, HopfAlgebra.mul_antipode_lTensor_comul, Module.Basis.tensorProduct_apply', PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, LinearMap.rTensor_neg, Pi.comul_coe_dFinsupp, PolynomialLaw.isCompat_apply, TensorProduct.map_smul_left, Algebra.TensorProduct.includeRight_surjective, TensorProduct.congr_pow, IsLocalRing.subsingleton_tensorProduct, Algebra.TensorProduct.lmul'_toLinearMap, LinearMap.lTensor_map, TensorProduct.map_map_comp_assoc_symm_eq, TensorProduct.tensorQuotEquivQuotSMul_comp_mk, AdicCompletion.ofTensorProduct_naturality, MvPolynomial.scalarRTensor_symm_apply_single, Representation.smul_one_tprod_asModule, LinearIsometryEquiv.toLinearEquiv_rTensor, Subalgebra.val_mulMap'_tmul, TensorProduct.equivFinsuppOfBasisLeft_apply, Algebra.TensorProduct.nontrivial_of_algebraMap_injective_of_flat_right, QuadraticModuleCat.toIsometry_inv_leftUnitor, LinearIsometryEquiv.toLinearIsometry_lTensor, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, TensorProduct.comm_comp_comm_assoc, Ideal.comap_fiberIsoOfBijectiveResidueField_symm, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inl, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inr, Matrix.kroneckerTMul_apply, Coalgebra.TensorProduct.map_toLinearMap, TensorProduct.comm_comp_comm, Submodule.baseChange_top, LinearEquiv.rTensor_trans_lTensor, LieAlgebra.ExtendScalars.instLieModule, SemimoduleCat.hom_hom_leftUnitor, TensorProduct.AlgebraTensorModule.lift_tmul, RingHom.SurjectiveOnStalks.baseChange', TensorProduct.antipode_def, Matrix.kroneckerTMul_assoc, Bialgebra.toLinearMap_comulAlgHom, LinearMap.convMul_apply, Algebra.injective_lift_lsmul, TensorProduct.lift_compr₂, KaehlerDifferential.range_kerCotangentToTensor, LinearMap.lid_comp_rTensor, Submodule.mulMap_op, IsTensorProduct.equiv_toLinearMap, LinearIndependent.tmul_of_flat_right, Prod.comul_comp_inr, Module.Flat.tensorProduct_mapIncl_injective_of_right, TensorProduct.lift_mk_compr₂ₛₗ, Derivation.liftKaehlerDifferential_apply, LieAlgebra.isSolvable_tensorProduct_iff, KaehlerDifferential.instIsScalarTowerTensorProduct_1, Finsupp.comul_comp_lsingle, Algebra.Presentation.baseChange_relation, KaehlerDifferential.DLinearMap_apply, Algebra.FinitePresentation.baseChange, Algebra.TensorProduct.lmul''_eq_lid_comp_mapOfCompatibleSMul, MvPolynomial.rTensor_apply, Algebra.TensorProduct.productMap_right, TensorProduct.ext_iff, TensorProduct.lift_comp_comm_eq, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, TensorProduct.vanishesTrivially_iff_sum_tmul_eq_zero, TensorProduct.Algebra.moduleAux_apply, TensorProduct.map_range_eq_span_tmul, Subalgebra.LinearDisjoint.isDomain, IsBaseChange.linearMapLeftRightHom_apply, LinearIsometry.rTensor_apply, Module.Finite.base_change, TensorProduct.AlgebraTensorModule.congr_trans, LinearMap.mul'_comm, CoalgHomClass.map_comp_comul_apply, LinearIsometry.toLinearMap_lTensor, Algebra.FormallySmooth.iff_injective_cotangentComplexBaseChange, Coalgebra.Repr.eq, Algebra.Generators.CotangentSpace.fst_compEquiv_apply, LinearMap.lTensor_comp_map, TensorProduct.finsuppScalarLeft_apply, TensorProduct.LieModule.lieModule, TensorProduct.nndist_tmul_le, Submodule.lTensorOne_one_tmul, Algebra.FormallyUnramified.comp_sec, TensorProduct.assoc_tensor, AlgebraicGeometry.pullbackSpecIso_hom_fst', PrimeSpectrum.mem_image_comap_zeroLocus_sdiff, Matrix.one_kroneckerTMul_one, Submodule.baseChange_span, KaehlerDifferential.tensorKaehlerEquiv_tmul_D, BialgCat.leftUnitor_def, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, TensorProduct.quotTensorEquivQuotSMul_comp_mk, Bialgebra.TensorProduct.lid_symm_apply, Bialgebra.TensorProduct.rid_toCoalgEquiv, AddMonoidAlgebra.scalarTensorEquiv_tmul, IntermediateField.LinearDisjoint.isField_of_forall, PointedCone.mem_maxTensorProduct, Coalgebra.TensorProduct.assoc_toLinearEquiv, SemimoduleCat.MonoidalCategory.rightUnitor_naturality, QuadraticForm.tmul_comp_tensorAssoc, TensorProduct.rTensorHomToHomRTensor_apply, IntermediateField.LinearDisjoint.isDomain', TensorProduct.fromDirectLimit_of_tmul, LinearMap.tensorKerEquiv_apply, Representation.dualTensorHom_comm, LinearMap.baseChange_tmul, LinearMap.transvection.baseChange, Module.Basis.tensorProduct_repr_tmul_apply, MvPolynomial.algebraTensorAlgEquiv_symm_monomial, PolynomialLaw.ground_apply, QuadraticForm.associated_tmul, OrthonormalBasis.tensorProduct_apply, TensorProduct.neg_add_cancel, LinearMap.rTensor_add, Algebra.TensorProduct.ringHom_ext_iff, LinearEquiv.lTensor_refl_apply, TensorProduct.star_map_apply_eq_map_intrinsicStar, Module.Invertible.rightCancelEquiv_comp_rTensor_comp_symm, instNontrivialTensorProduct, TensorProduct.one_gradedMul, TensorProduct.AlgebraTensorModule.smul_eq_lsmul_rTensor, LinearEquiv.rTensor_trans, TensorProduct.finsuppScalarLeft_symm_apply_single, TensorProduct.piScalarRightHom_tmul, Algebra.TensorProduct.toLinearMap_map, QuadraticForm.tensorComm_symm, Algebra.TensorProduct.adjoin_tmul_eq_top, Bialgebra.mul_compr₂_comul, Algebra.TensorProduct.equivPiOfFiniteBasis_apply, Subalgebra.mulMap_tmul, LinearMap.rTensor_pow, Algebra.instIsStandardEtaleTensorProduct, TensorProduct.piRight_apply, Representation.ind_apply, TensorProduct.congrIsometry_apply, Algebra.TensorProduct.map_id_comp, LinearEquiv.baseChange_one, Algebra.TensorProduct.piScalarRight_tmul_apply, Equiv.tensorProductComm_def, Algebra.TensorProduct.lidOfCompatibleSMul_tmul, TensorProduct.map_pow, KaehlerDifferential.mulActionBaseChange_smul_zero, Module.FaithfullyFlat.nontrivial_tensorProduct_iff_left, Module.Flat.iff_rTensor_preserves_injective_linearMap', LinearMap.rTensor_smul, TensorProduct.isPushout', Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, TensorProduct.toLinearMap_symm_rid, TensorProduct.assoc_tensor', CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, TensorProduct.nontrivial_of_linearMap_injective_of_flat_left, Module.Finite.tensorProduct, GradedTensorProduct.of_one, MvPolynomial.tensorEquivSum_X_tmul_one, LinearEquiv.lTensor_trans_rTensor, TensorProduct.AlgebraTensorModule.coe_rTensor, LieSubmodule.coe_baseChange, SpecialLinearGroup.baseChange_apply_coe, CoalgCat.leftUnitor_def, QuadraticMap.tensorDistrib_tmul, AlternatingMap.domCoprod_apply, CharacterModule.homEquiv_apply_apply, AlgebraicGeometry.pullbackSpecIso_hom_snd, AdicCompletion.tensor_map_id_left_injective_of_injective, Submodule.mulMap_range, TensorProduct.nnnorm_lid, Algebra.TensorProduct.map_bijective, TensorProduct.tensorQuotientEquiv_symm_apply_tmul_mk, Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, Algebra.TensorProduct.nontrivial_of_algebraMap_injective_of_flat_left, GradedTensorProduct.symm_of_of, ModuleCat.MonoidalCategory.whiskerRight_def, matrixEquivTensor_apply, TensorProduct.lift_mk_compr₂, Module.FaithfullyFlat.iff_flat_and_lTensor_faithful, MatrixEquivTensor.toFunAlgHom_apply, LinearMap.BilinForm.baseChange_tmul, TensorProduct.gradedComm_of_tmul_of, TensorProduct.isTensorProduct, Algebra.TensorProduct.opAlgEquiv_symm_tmul, LinearMap.baseChange_mul, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, IntermediateField.LinearDisjoint.isDomain, TensorProduct.map_surjective, Algebra.TensorProduct.lid_toLinearEquiv, rank_tensorProduct', Module.Flat.iff_rTensor_injective', LinearMap.baseChange_id, MvPolynomial.scalarRTensor_apply_tmul_apply, Algebra.FiniteType.baseChange, TensorProduct.directLimitRight_symm_of_tmul, Module.finrank_baseChange, PolynomialLaw.toFun_comp, IsPurelyInseparable.exists_pow_pow_mem_range_tensorProduct_of_expChar, TensorProduct.toMatrix_comm, LinearMap.lTensor_add, Algebra.TensorProduct.lid_symm_apply, dualTensorHomEquivOfBasis_apply, Submodule.FG.rTensor.directLimit_apply', Orthonormal.tmul, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Module.Flat.injective_characterModule_iff_rTensor_preserves_injective_linearMap, TensorProduct.assoc_symm_tmul, LinearMap.ker_tensorProductMk, LieSubmodule.baseChange_top, TensorProduct.tmul_neg, Matrix.kroneckerStarAlgEquiv_apply, lTensor_mkQ, LinearMap.lTensor_inj_iff_rTensor_inj, Algebra.TensorProduct.leftComm_symm_tmul, TensorProduct.comm_symm_tmul, MvPolynomial.tensorEquivSum_C_tmul_C, TensorProduct.sum_tmul_basis_left_injective, Subalgebra.rTensorBot_tmul, LinearIsometryEquiv.symm_lTensor, LinearMap.comm_comp_rTensor_comp_comm_eq, TensorProduct.equivFinsuppOfBasisRight_symm_apply, QuadraticForm.associated_baseChange, ModuleCat.MonoidalCategory.tensorObj_carrier, KaehlerDifferential.map_liftBaseChange_smul, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, LinearMap.trace_baseChange, TensorProduct.exists_sum_tmul_eq, LinearMap.lTensor_tensor, LaurentPolynomial.comul_C_mul_T_self, CliffordAlgebra.ofBaseChange_comp_toBaseChange, le_comap_range_rTensor, MultilinearMap.domCoprodDep'_apply, TensorProduct.map_id, Algebra.TensorProduct.congr_symm, TensorProduct.AlgebraTensorModule.rightComm_symm, Algebra.FormallyUnramified.iff_exists_tensorProduct, IsBaseChange.toDualBaseChange_tmul, Coalgebra.comm_comp_comul, Algebra.TensorProduct.comm_toLinearEquiv, TensorProduct.instDirectedSystemCoeLinearMapIdLTensor, Rep.leftRegularTensorTrivialIsoFree_hom_hom, Bialgebra.TensorProduct.assoc_symm_tmul, TensorProduct.quotTensorEquivQuotSMul_symm_comp_mkQ, TensorProduct.isScalarTower, Algebra.Generators.CotangentSpace.fst_compEquiv, Ideal.map_includeLeft_eq, TensorProduct.gradedComm_gradedMul, Bialgebra.TensorProduct.assoc_toAlgEquiv, Algebra.TensorProduct.rid_symm_apply, Algebra.TensorProduct.rTensor_ker, LinearEquiv.rTensor_tmul, Coalgebra.TensorProduct.lid_symm_apply, TensorProduct.rightComm_def, Algebra.TensorProduct.map_comp_includeLeft, Subalgebra.LinearDisjoint.isDomain_of_injective, TensorProduct.finsuppRight_apply_tmul_apply, TensorProduct.directSumRight_symm_lof_tmul, LinearEquiv.lTensor_trans, LieAlgebra.ExtendScalars.map_apply_tmul, Algebra.TensorProduct.mapOfCompatibleSMul_tmul, LieAlgebra.rootSpaceProduct_tmul, Module.Flat.iff_lTensor_injective', LinearMap.charpoly_baseChange, TensorProduct.finsuppRight_apply_tmul, Algebra.EssFiniteType.baseChange, Submodule.mulMap_comp_rTensor, TensorProduct.map_zero_right, LinearIndepOn.tmul_of_isDomain, CommRingCat.coproductCocone_ι, polyEquivTensor_symm_apply_tmul_eq_smul, TensorProduct.AlgebraTensorModule.lcurry_apply, TensorProduct.comm_trans_rid, AlgebraicGeometry.pullbackSpecIso_hom_fst_assoc, AlgebraicGeometry.Proj.lift_awayMapₐ_awayMapₐ_surjective, LinearMap.baseChange_add, PrimeSpectrum.nontrivial_iff_mem_rangeComap, TensorProduct.toMatrix_map, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, TensorProduct.ext_iff_inner_right_threefold, LinearEquiv.lTensor_mul, IntermediateField.LinearDisjoint.isField_of_isAlgebraic, TensorProduct.exists_of_fg, Algebra.TensorProduct.comm_symm, Algebra.H1Cotangent.exact_δ_mapBaseChange, LinearMap.rTensor_mul, KaehlerDifferential.instIsScalarTowerTensorProduct_2, contractLeft_assoc_coevaluation', TensorProduct.dualDistribEquivOfBasis_apply_apply, LinearMap.baseChangeHom_apply, OrthonormalBasis.tensorProduct_repr_tmul_apply, Matrix.kroneckerStarAlgEquiv_symm_apply, CommSemiring.comul_apply, Algebra.Generators.H1Cotangent.δ_map, TensorProduct.assocIsometry_symm_apply, Algebra.PreSubmersivePresentation.baseChange_ring, TensorProduct.inner_map_map, Algebra.TensorProduct.lift_includeLeft_includeRight, LinearMap.lTensor_tmul, LinearMap.lTensor_eqLocus_subtype_tensoreqLocusEquiv_symm, TensorProduct.toLinearMap_mapInclIsometry, TensorProduct.lid_tensor, TensorProduct.coe_finsuppScalarRight', KaehlerDifferential.mulActionBaseChange_smul_tmul, Algebra.FormallySmooth.iff_split_injection, TensorProduct.instIsCentralScalar, Algebra.TensorProduct.mul_apply, TensorProduct.lidIsometry_symm_apply, Algebra.TensorProduct.linearEquivIncludeRange_tmul, TensorProduct.range_mapIncl_mono, Algebra.Smooth.exists_subalgebra_fg, TensorProduct.AlgebraTensorModule.congr_tmul, Module.FaithfullyFlat.subsingleton_tensorProduct_iff_left, LinearEquiv.coe_rTensor, Algebra.TensorProduct.includeLeft_surjective, ModuleCat.ihom_ev_app, Algebra.TensorProduct.adjoin_one_tmul_image_eq_top, Representation.IndV.hom_ext_iff, PolynomialLaw.isCompat', TensorProduct.one_smul, Pi.comul_comp_finsuppLcoeFun, TensorProduct.finsuppLeft'_apply, GradedTensorProduct.of_symm_one, TensorProduct.lift.equiv_apply, TensorProduct.finsuppRight_tmul_single, Rep.indResHomEquiv_symm_apply_hom, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, TensorProduct.Algebra.mul'_comp_tensorTensorTensorComm, AlgHom.mulLeftRightMatrix.comp_inv, retractionOfSectionOfKerSqZero_tmul_D, Algebra.TensorProduct.one_def, IsLocalizedModule.map_lTensor, Module.Flat.rTensor_preserves_injective_linearMap, Module.Basis.baseChange_linearMap, LinearEquiv.congr_trans_lTensor, LinearEquiv.baseChange_trans, Module.Invertible.leftCancelEquiv_comp_lTensor_comp_symm, TensorProduct.toDirectLimit_tmul_of, Algebra.TensorProduct.includeLeftRingHom_apply, TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_tmul, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, TensorProduct.smulCommClass_left, Algebra.Presentation.baseChange_toGenerators, TensorProduct.quotTensorEquivQuotSMul_mk_tmul, ModuleCat.MonoidalCategory.associator_inv_apply, derivationQuotKerSq_mk, TensorProduct.uncurry_apply, TensorProduct.tensorQuotEquivQuotSMul_symm_comp_mkQ, MvPolynomial.universalFactorizationMapPresentation_jacobian, LinearMap.rTensor_tensor, TensorProduct.edist_tmul_le, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap, TensorProduct.AlgebraTensorModule.lTensor_tmul, QuadraticModuleCat.hom_hom_associator, IsAzumaya.AlgHom.mulLeftRight_bij, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap', Rep.linearization_μ_hom, TensorProduct.liftAux.smulₛₗ, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, IsAddUnit.tmul_right, TensorProduct.includeRight_lid, Matrix.zero_kroneckerTMul, TensorProduct.tensorTensorTensorAssoc_tmul, SemimoduleCat.MonoidalCategory.associator_hom_apply, TensorProduct.finsuppLeft_apply_tmul_apply, instFinitePresentationTensorProduct, Module.Presentation.tensor_var, MvPolynomial.pderiv_inl_universalFactorizationMap_X, QuadraticModuleCat.hom_inv_associator, LieSubmodule.baseChange_bot, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero, TensorProduct.eq_repr_basis_right, Algebra.TensorProduct.closure_range_union_range_eq_top, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val, kroneckerLinearEquiv_tmul, SemimoduleCat.MonoidalCategory.id_tensorHom_id, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc, MvPolynomial.rTensorAlgHom_apply_eq

---

← Back to Index