Documentation Verification Report

Support

πŸ“ Source: Mathlib/RingTheory/Support.lean

Statistics

MetricCount
Definitionssupport
1
Theoremsexists_subsingleton_away, support_eq, exists_subsingleton_away, subsingleton_iff_support_subset, annihilator_le_of_mem_support, mem_support_iff, mem_support_iff', mem_support_iff_exists_annihilator, mem_support_iff_of_finite, mem_support_iff_of_span_eq_top, mem_support_mono, nonempty_support_iff, nonempty_support_of_nontrivial, notMem_support_iff, notMem_support_iff', support_eq_empty, support_eq_empty_iff, support_eq_zeroLocus, support_of_algebra, support_of_exact, support_of_noZeroSMulDivisors, support_quotSMulTop, support_quotient, support_subset_of_injective, support_subset_of_surjective
25
Total26

IsLocalizedModule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_subsingleton_away πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
LocalizedModule
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
IsScalarTower.left
IsScalarTower.right
Equiv.subsingleton
LocalizedModule.exists_subsingleton_away

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
support_eq πŸ“–mathematicalβ€”Module.supportβ€”RingHomInvPair.ids
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Module.support_subset_of_injective
injective
Module.support_subset_of_surjective
surjective

LocalizedModule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_subsingleton_away πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
LocalizedModule
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommGroup.toAddCommMonoid
β€”PrimeSpectrum.isPrime
Set.mem_iUnionβ‚‚
Set.compl_iInterβ‚‚
PrimeSpectrum.zeroLocus_iUnionβ‚‚
Set.biUnion_of_singleton
Module.support_eq_zeroLocus
subsingleton_iff
Submonoid.mem_powers
Module.mem_annihilator
subsingleton_iff_support_subset πŸ“–mathematicalβ€”LocalizedModule
CommRing.toCommSemiring
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
Set
PrimeSpectrum
Set.instHasSubset
Module.support
PrimeSpectrum.zeroLocus
Set.instSingletonSet
β€”subsingleton_iff
Module.mem_support_iff_exists_annihilator
Ideal.IsPrime.mem_of_pow_mem
PrimeSpectrum.isPrime
Submodule.mem_annihilator_span_singleton
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
one_smul
Submodule.span_singleton_eq_bot
Submodule.annihilator_eq_top_iff
Ideal.radical_eq_sInf
Ideal.mem_sInf

Module

Definitions

NameCategoryTheorems
support πŸ“–CompOp
35 mathmath: support_quotient, LocalizedModule.subsingleton_iff_disjoint, LinearEquiv.support_eq, rankAtStalk_eq_zero_iff_notMem_support, mem_support_iff_of_finite, support_eq_empty, support_subset_preimage_comap, support_of_algebra, Algebra.unramifiedLocus_eq_compl_support, mem_support_iff_exists_annihilator, mem_support_iff', support_of_exact, IsLocalRing.closedPoint_mem_support, mem_support_mono, support_eq_empty_iff, rankAtStalk_pos_iff_mem_support, nonempty_support_of_nontrivial, support_quotSMulTop, LocalizedModule.subsingleton_iff_support_subset, mem_support_iff_nontrivial_residueField_tensorProduct, support_of_supportDim_eq_zero, notMem_support_iff, support_of_noZeroSMulDivisors, exists_ltSeries_support_isMaximal_last_of_ltSeries_support, support_subset_of_injective, mem_support_iff, nonempty_support_iff, support_eq_zeroLocus, stableUnderSpecialization_support, Algebra.smoothLocus_eq_compl_support_inter, isClosed_support, mem_support_iff_of_span_eq_top, support_subset_of_surjective, Algebra.etaleLocus_eq_compl_support, notMem_support_iff'

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_le_of_mem_support πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
AddCommGroup.toAddCommMonoid
PrimeSpectrum.asIdeal
β€”mem_support_iff_exists_annihilator
le_trans
LinearMap.annihilator_le_of_injective
Subtype.val_injective
mem_support_iff πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
Nontrivial
LocalizedModule
Ideal.primeCompl
CommSemiring.toSemiring
PrimeSpectrum.asIdeal
PrimeSpectrum.isPrime
AddCommGroup.toAddCommMonoid
β€”β€”
mem_support_iff' πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
β€”notMem_support_iff'
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
mem_support_iff_exists_annihilator πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.annihilator
AddCommGroup.toAddCommMonoid
Submodule.span
Set.instSingletonSet
PrimeSpectrum.asIdeal
β€”mem_support_iff'
instIsConcreteLE
mem_support_iff_of_finite πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
AddCommGroup.toAddCommMonoid
PrimeSpectrum.asIdeal
β€”annihilator_le_of_mem_support
mem_support_iff_of_span_eq_top
instIsConcreteLE
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
Submodule.annihilator_top
Submodule.mem_annihilator_span
Finset.dvd_prod_of_mem
Finset.mem_attach
mul_comm
SemigroupAction.mul_smul
smul_zero
Submonoid.prod_mem
PrimeSpectrum.isPrime
Subtype.forall'
mem_support_iff_of_span_eq_top πŸ“–mathematicalSubmodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Top.top
Submodule
Submodule.instTop
PrimeSpectrum
Set
Set.instMembership
support
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.annihilator
Set.instSingletonSet
PrimeSpectrum.asIdeal
β€”Mathlib.Tactic.Contrapose.contrapose₁
PrimeSpectrum.isPrime
notMem_support_iff
IsScalarTower.left
IsScalarTower.right
LocalizedModule.subsingleton_iff_ker_eq_top
top_le_iff
Submodule.span_le
Set.subset_def
instIsConcreteLE
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
mem_support_iff_exists_annihilator
mem_support_mono πŸ“–mathematicalPrimeSpectrum
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
Set
Set.instMembership
support
β€”mem_support_iff_exists_annihilator
LE.le.trans
nonempty_support_iff πŸ“–mathematicalβ€”Set.Nonempty
PrimeSpectrum
CommRing.toCommSemiring
support
Nontrivial
β€”Set.nonempty_iff_ne_empty
support_eq_empty_iff
not_subsingleton_iff_nontrivial
nonempty_support_of_nontrivial πŸ“–mathematicalβ€”Set.Nonempty
PrimeSpectrum
CommRing.toCommSemiring
support
β€”nonempty_support_iff
notMem_support_iff πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
LocalizedModule
Ideal.primeCompl
CommSemiring.toSemiring
PrimeSpectrum.asIdeal
PrimeSpectrum.isPrime
AddCommGroup.toAddCommMonoid
β€”not_nontrivial_iff_subsingleton
notMem_support_iff' πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
PrimeSpectrum.asIdeal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”PrimeSpectrum.isPrime
Ideal.one_notMem
support_eq_empty πŸ“–mathematicalβ€”support
Set
PrimeSpectrum
CommRing.toCommSemiring
Set.instEmptyCollection
β€”support_eq_empty_iff
support_eq_empty_iff πŸ“–mathematicalβ€”support
Set
PrimeSpectrum
CommRing.toCommSemiring
Set.instEmptyCollection
β€”Set.subset_empty_iff
PrimeSpectrum.zeroLocus_singleton_one
LocalizedModule.subsingleton_iff_support_subset
LocalizedModule.subsingleton_iff
Submonoid.powers_one
one_smul
support_eq_zeroLocus πŸ“–mathematicalβ€”support
PrimeSpectrum.zeroLocus
CommRing.toCommSemiring
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
AddCommGroup.toAddCommMonoid
β€”Set.ext
mem_support_iff_of_finite
support_of_algebra πŸ“–mathematicalβ€”support
Ring.toAddCommGroup
Algebra.toModule
CommRing.toCommSemiring
Ring.toSemiring
PrimeSpectrum.zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
algebraMap
β€”Set.ext
RingHom.instRingHomClass
instIsConcreteLE
Algebra.smul_def
MulZeroClass.zero_mul
Algebra.algebraMap_eq_smul_one
support_of_exact πŸ“–mathematicalFunction.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
support
Set
PrimeSpectrum
Set.instUnion
β€”subset_antisymm
Set.instAntisymmSubset
Mathlib.Tactic.Contrapose.contrapose₁
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Submonoid.mul_mem
PrimeSpectrum.isPrime
SemigroupAction.mul_smul
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Set.union_subset
support_subset_of_injective
support_subset_of_surjective
support_of_noZeroSMulDivisors πŸ“–mathematicalβ€”support
Set.univ
PrimeSpectrum
CommRing.toCommSemiring
β€”IsDomain.toIsCancelMulZero
exists_ne
Ideal.zero_mem
support_quotSMulTop πŸ“–mathematicalβ€”support
QuotSMulTop
Submodule.Quotient.addCommGroup
CommRing.toRing
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submodule.pointwiseDistribMulAction
toDistribMulAction
Top.top
Submodule.instTop
Submodule.Quotient.module
Set
PrimeSpectrum
Set.instInter
PrimeSpectrum.zeroLocus
Set.instSingletonSet
β€”smulCommClass_self
IsScalarTower.left
LinearEquiv.support_eq
Submodule.ideal_span_singleton_smul
support_quotient
PrimeSpectrum.zeroLocus_span
support_quotient πŸ“–mathematicalβ€”support
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
toDistribMulAction
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Set
PrimeSpectrum
Set.instInter
PrimeSpectrum.zeroLocus
SetLike.coe
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”subset_antisymm
IsScalarTower.left
Set.instAntisymmSubset
Set.subset_inter
support_subset_of_surjective
Submodule.mkQ_surjective
support_eq_zeroLocus
Finite.quotient
PrimeSpectrum.zeroLocus_anti_mono_ideal
Submodule.annihilator_quotient
Submodule.mem_colon
Submodule.smul_mem_smul
PrimeSpectrum.isPrime
mem_support_iff
RingHomInvPair.ids
RingHomCompTriple.ids
Localization.isLocalization
localizedModuleIsLocalizedModule
Submodule.localized.eq_1
IsScalarTower.right
instIsLocalizedModuleLinearMapOfIsLocalization
Submodule.localized'_smul
Ideal.localized'_eq_map
Submodule.localized'_top
Submodule.Quotient.nontrivial_iff
Submodule.top_ne_ideal_smul_of_le_jacobson_annihilator
Finite.instLocalizationLocalizedModule
trans
Localization.AtPrime.isLocalRing
instIsTransLe
Localization.AtPrime.map_eq_maximalIdeal
Ideal.map_mono
IsLocalRing.maximalIdeal_le_jacobson
Equiv.nontrivial
support_subset_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Set
PrimeSpectrum
Set.instHasSubset
support
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
support_subset_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Set
PrimeSpectrum
Set.instHasSubset
support
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass

---

← Back to Index