Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/TensorProduct/Basic.lean

Statistics

MetricCount
DefinitionsincludeLeft, includeLeftRingHom, includeRight, instAddCommGroupWithOne, instAddCommMonoidWithOne, instAlgebra, instCommRing, instCommSemiring, instMul, instNonAssocRing, instNonAssocSemiring, instNonUnitalNonAssocRing, instNonUnitalNonAssocSemiring, instNonUnitalRing, instNonUnitalSemiring, instOneTensorProduct, instRing, instSemiring, leftAlgebra, mul, rightAlgebra, liftBaseChange, liftBaseChangeEquiv, moduleAux, instStarMul, instStarRing
26
Theoremsadjoin_one_tmul_image_eq_top, algebraMap_apply, algebraMap_apply', algebraMap_def, algebraMap_eq_includeRight, closure_range_union_range_eq_top, ext, ext', ext_iff, includeLeftRingHom_apply, includeLeftRingHom_comp_algebraMap, includeLeft_apply, includeLeft_surjective, includeRight_apply, includeRight_surjective, instSMulCommClassTensorProduct, instSMulCommClassTensorProduct_1, intCast_def, intCast_def', isScalarTower_right, mk_one_injective_of_isScalarTower, mul_apply, mul_assoc, mul_one, natCast_def, natCast_def', one_def, one_mul, right_algebraMap_apply, right_isScalarTower, ringHom_ext, ringHom_ext_iff, sMulCommClass_right, tmul_mul_tmul, tmul_pow, baseChange_lmul, tmul, liftBaseChangeEquiv_symm_apply, liftBaseChange_comp, liftBaseChange_one_tmul, liftBaseChange_tmul, mul'_tensor, mulLeft_tmul, mulRight_tmul, range_liftBaseChange, tmul, map_range_rTensor_subtype_lid, linearMap_comp_mul', moduleAux_apply, mul'_comp_tensorTensorTensorComm, smul_def, flip_mk_surjective, mk_surjective
53
Total79

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange_lmul πŸ“–mathematicalβ€”LinearMap.baseChange
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
DFunLike.coe
AlgHom
Module.End
Module.End.instSemiring
Module.End.instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
toSMul
id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
lmul
TensorProduct
TensorProduct.instSemiring
TensorProduct.leftAlgebra
to_smulCommClass
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.right
to_smulCommClass
TensorProduct.isScalarTower_left
smulCommClass_self
IsScalarTower.left
LinearMap.ext_ring
IsScalarTower.to_smulCommClass
LinearMap.ext
mul_one

Algebra.TensorProduct

Definitions

NameCategoryTheorems
includeLeft πŸ“–CompOp
37 mathmath: lift_comp_includeLeft, includeLeft_map_center_le, MvPolynomial.universalFactorizationMap_comp_map, Subalgebra.LinearDisjoint.include_range, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, algEquivIncludeRange_symm_tmul, linearEquivIncludeRange_toLinearMap, includeLeft_apply, includeLeft_bijective, map_ker, CommRingCat.coproductCocone_inl, productMap_left, includeLeft_injective, CommAlgCat.fst_unop_hom, CommAlgCat.binaryCofan_inl, comm_comp_includeRight, comm_comp_includeLeft, linearEquivIncludeRange_symm_tmul, algEquivIncludeRange_tmul, map_range, ext_iff, algEquivIncludeRange_toAlgHom, polyEquivTensor_apply, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, linearEquivIncludeRange_symm_toLinearMap, lmul'_comp_includeLeft, algEquivIncludeRange_symm_toAlgHom, liftEquiv_symm_apply_coe, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, Ideal.map_includeLeft_eq, rTensor_ker, map_comp_includeLeft, CommRingCat.coproductCocone_ΞΉ, lift_includeLeft_includeRight, linearEquivIncludeRange_tmul, includeLeft_surjective, closure_range_union_range_eq_top
includeLeftRingHom πŸ“–CompOp
13 mathmath: CommRingCat.pushoutCocone_inl, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, includeLeftRingHom_comp_algebraMap, CommRingCat.isPushout_tensorProduct, algebraMap_def, AlgebraicGeometry.pullbackSpecIso_inv_fst, AlgebraicGeometry.pullbackSpecIso_inv_fst_assoc, AlgebraicGeometry.pullbackSpecIso_hom_fst, ringHom_ext_iff, AlgebraicGeometry.pullbackSpecIso_hom_fst_assoc, includeLeftRingHom_apply, MvPolynomial.universalFactorizationMapPresentation_jacobian, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
includeRight πŸ“–CompOp
64 mathmath: Ideal.comap_fiberIsoOfBijectiveResidueField_apply, PrimeSpectrum.preimageEquivFiber_symm_apply_coe, MvPolynomial.universalFactorizationMap_comp_map, Subalgebra.LinearDisjoint.include_range, algEquivIncludeRange_symm_tmul, includeRight_apply, linearEquivIncludeRange_toLinearMap, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, mem_adjoin_map_integralClosure_of_isStandardEtale, CommRingCat.pushoutCocone_inr, Ideal.map_includeRight_eq, AlgebraicGeometry.pullbackSpecIso_inv_snd, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, map_ker, includeRight_map_center_le, algebraMap_eq_includeRight, includeLeftRingHom_comp_algebraMap, CommRingCat.isPushout_tensorProduct, CommRingCat.coproductCocone_inr, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, includeRight_injective, lift_comp_includeRight, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, includeRight_bijective, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, lmul'_comp_includeRight, CommAlgCat.snd_unop_hom, MonoidAlgebra.tensorEquiv_tmul, comm_comp_includeRight, comm_comp_includeLeft, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, linearEquivIncludeRange_symm_tmul, algEquivIncludeRange_tmul, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, map_range, map_comp_includeRight, AddMonoidAlgebra.tensorEquiv_tmul, ext_iff, algEquivIncludeRange_toAlgHom, lTensor_ker, linearEquivIncludeRange_symm_toLinearMap, lift_comp_includeRight', algEquivIncludeRange_symm_toAlgHom, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, CommAlgCat.binaryCofan_inr, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, MvPolynomial.universalFactorizationMap_freeMonic, map_restrictScalars_comp_includeRight, liftEquiv_symm_apply_coe, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, includeRight_surjective, Ideal.comap_fiberIsoOfBijectiveResidueField_symm, RingHom.SurjectiveOnStalks.baseChange', productMap_right, ringHom_ext_iff, AlgebraicGeometry.pullbackSpecIso_hom_snd, CommRingCat.coproductCocone_ΞΉ, lift_includeLeft_includeRight, linearEquivIncludeRange_tmul, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, MvPolynomial.universalFactorizationMapPresentation_jacobian, closure_range_union_range_eq_top, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc
instAddCommGroupWithOne πŸ“–CompOp
1 mathmath: intCast_def
instAddCommMonoidWithOne πŸ“–CompOp
3 mathmath: Bialgebra.comul_natCast, natCast_def', natCast_def
instAlgebra πŸ“–CompOp
191 mathmath: Subalgebra.mulMap_comm, Bialgebra.comulAlgHom_apply, algEquivOfLinearEquivTripleTensorProduct_apply, Ideal.comap_fiberIsoOfBijectiveResidueField_apply, PrimeSpectrum.preimageEquivFiber_symm_apply_coe, includeLeft_map_center_le, MvPolynomial.universalFactorizationMap_comp_map, Subalgebra.LinearDisjoint.include_range, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', CommAlgCat.braiding_hom_hom, mapOfCompatibleSMul_surjective, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, PolyEquivTensor.right_inv, Algebra.FormallyUnramified.lmul_elem, instLiesOverFiberOfIsPrime, AlgebraicGeometry.diagonal_SpecMap, Algebra.FormallyUnramified.isOpenImmersion_SpecMap_lmul, Subalgebra.mulMap_toLinearMap, AlgHom.mulLeftRightMatrix.inv_comp, BialgCat.associator_def, comm_comp_map_apply, PolyEquivTensor.toFunAlgHom_apply_tmul, Subalgebra.comm_trans_rTensorBot, Subalgebra.mulMap_map_comp_eq, algEquivIncludeRange_symm_tmul, leftComm_tmul, includeRight_apply, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, linearEquivIncludeRange_toLinearMap, Matrix.toAlgEquiv_kroneckerStarAlgEquiv, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, lid_tmul, mem_adjoin_map_integralClosure_of_isStandardEtale, CommRingCat.pushoutCocone_inr, Ideal.map_includeRight_eq, AlgebraicGeometry.pullbackSpecIso_inv_snd, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, Bialgebra.TensorProduct.comulAlgHom_def, map_ker, includeRight_map_center_le, productMap_left_apply, algebraMap_eq_includeRight, Subalgebra.lTensorBot_one_tmul, AlgebraicGeometry.pullbackSpecIso_hom_base, productMap_left, Subalgebra.mulMap_bot_left_eq, includeLeftRingHom_comp_algebraMap, productMap_apply_tmul, KaehlerDifferential.End_equiv_aux, lmul'_apply_tmul, TensorProduct.gradedComm_algebraMap, CommRingCat.isPushout_tensorProduct, CommAlgCat.binaryCofan_pt, Bialgebra.TensorProduct.assoc_tmul, Matrix.kroneckerAlgEquiv_apply, CommRingCat.coproductCocone_inr, polyEquivTensor_symm_apply_tmul, IsAzumaya.mulLeftRight_comp_congr, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, MvPolynomial.finitePresentation_universalFactorizationMap, HopfAlgCat.associator_def, includeRight_injective, AlgHom.mulLeftRight_apply, lmul'_comp_map, IsAzumaya.bij, lift_comp_includeRight, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, Bialgebra.comul_algebraMap, Subalgebra.mulMap'_surjective, TensorProduct.isPushout, leftComm_toLinearEquiv, MvPolynomial.finite_universalFactorizationMap, coe_polyEquivTensor'_symm, MvPolynomial.universalFactorizationMapPresentation_map, coe_polyEquivTensor', includeRight_bijective, AlgCat.hom_inv_leftUnitor, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, productMap_range, productMap_eq_comp_map, lmul'_comp_includeRight, AlgCat.hom_hom_leftUnitor, MvPolynomial.universalFactorizationMapPresentation_relation, Subalgebra.rTensorBot_tmul_one, IsAzumaya.coe_tensorEquivEnd, CommAlgCat.binaryCofan_inl, MonoidAlgebra.tensorEquiv_tmul, TensorProduct.Algebra.linearMap_comp_mul', comm_comp_includeRight, matrixEquivTensor_apply_single, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, comm_comp_includeLeft, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, matrixEquivTensor_apply_symm, Subalgebra.mulMap_bot_right_eq, linearEquivIncludeRange_symm_tmul, algEquivIncludeRange_tmul, MatrixEquivTensor.left_inv, Subalgebra.lTensorBot_symm_apply, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, map_range, map_comp_includeRight, MvPolynomial.ker_evalβ‚‚Hom_universalFactorizationMap, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, CommAlgCat.braiding_inv_hom, AddMonoidAlgebra.tensorEquiv_tmul, ext_iff, algEquivIncludeRange_toAlgHom, Derivation.tensorProductTo_mul, comm_symm_tmul, Subalgebra.linearDisjoint_iff_injective, BialgHomClass.map_comp_comulAlgHom, PolyEquivTensor.left_inv, Subalgebra.lTensorBot_tmul, productMap_right_apply, Bialgebra.TensorProduct.lid_toAlgEquiv, Matrix.kroneckerAlgEquiv_symm_apply, polyEquivTensor_apply, Subalgebra.LinearDisjoint.val_mulMap_tmul, algebraMap_apply', Subalgebra.mulMap_range, Subalgebra.rTensorBot_symm_apply, lTensor_ker, linearEquivIncludeRange_symm_toLinearMap, MvPolynomial.pderiv_inr_universalFactorizationMap_X, AlgebraicGeometry.pullbackSpecIso_hom_base_assoc, comm_tmul, Bialgebra.TensorProduct.assoc_toCoalgEquiv, lmul'_comp_includeLeft, MatrixEquivTensor.right_inv, Bialgebra.TensorProduct.lid_toCoalgEquiv, algEquivIncludeRange_symm_toAlgHom, MvPolynomial.aeval_one_tmul, Subalgebra.comm_trans_lTensorBot, comm_comp_map, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, Matrix.toLinearEquiv_kroneckerAlgEquiv, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, CommAlgCat.binaryCofan_inr, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, MvPolynomial.universalFactorizationMap_freeMonic, MvPolynomial.universalFactorizationMapPresentation_val, AlgebraicGeometry.diagonal_Spec_map, MvPolynomial.universalFactorizationMapPresentation_Οƒ', map_restrictScalars_comp_includeRight, liftEquiv_symm_apply_coe, Bialgebra.TensorProduct.lid_tmul, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, includeRight_surjective, lmul'_toLinearMap, Subalgebra.val_mulMap'_tmul, Ideal.comap_fiberIsoOfBijectiveResidueField_symm, RingHom.SurjectiveOnStalks.baseChange', Bialgebra.toLinearMap_comulAlgHom, lmul''_eq_lid_comp_mapOfCompatibleSMul, productMap_right, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, Bialgebra.TensorProduct.lid_symm_apply, ringHom_ext_iff, adjoin_tmul_eq_top, Bialgebra.mul_comprβ‚‚_comul, Subalgebra.mulMap_tmul, TensorProduct.isPushout', AlgebraicGeometry.pullbackSpecIso_hom_snd, matrixEquivTensor_apply, MatrixEquivTensor.toFunAlgHom_apply, lid_toLinearEquiv, lid_symm_apply, leftComm_symm_tmul, Subalgebra.rTensorBot_tmul, Algebra.FormallyUnramified.iff_exists_tensorProduct, comm_toLinearEquiv, Bialgebra.TensorProduct.assoc_symm_tmul, Ideal.map_includeLeft_eq, Bialgebra.TensorProduct.assoc_toAlgEquiv, mapOfCompatibleSMul_tmul, CommRingCat.coproductCocone_ΞΉ, polyEquivTensor_symm_apply_tmul_eq_smul, comm_symm, lift_includeLeft_includeRight, linearEquivIncludeRange_tmul, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, AlgHom.mulLeftRightMatrix.comp_inv, MvPolynomial.universalFactorizationMapPresentation_jacobian, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap, IsAzumaya.AlgHom.mulLeftRight_bij, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap', MvPolynomial.pderiv_inl_universalFactorizationMap_X, closure_range_union_range_eq_top, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc
instCommRing πŸ“–CompOp
83 mathmath: CommRingCat.tensorProd_map_right, Algebra.Generators.baseChange_val, RingHom.SurjectiveOnStalks.baseChange, MvPolynomial.universalFactorizationMap_comp_map, CommRingCat.pushoutCocone_pt, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', TensorProduct.toIntegralClosure_bijective_of_isLocalization, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, AlgebraicGeometry.diagonal_SpecMap, Algebra.FormallyUnramified.isOpenImmersion_SpecMap_lmul, Algebra.QuasiFiniteAt.baseChange, Algebra.PreSubmersivePresentation.baseChange_jacobian, Algebra.IsStandardSmoothOfRelativeDimension.baseChange, TensorProduct.toIntegralClosure_bijective_of_smooth, Algebra.IsUnramifiedAt.residueField, CommRingCat.pushoutCocone_inl, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CommRingCat.pushoutCocone_inr, AlgebraicGeometry.pullbackSpecIso_inv_snd, Algebra.PreSubmersivePresentation.baseChange_toPresentation, CommRingCat.coproductCocone_inl, AlgebraicGeometry.pullbackSpecIso_hom_base, KaehlerDifferential.End_equiv_aux, TensorProduct.toIntegralClosure_mvPolynomial_bijective, RingHom.SurjectiveOnStalks.tensorProductMap, CommRingCat.isPushout_tensorProduct, CommAlgCat.binaryCofan_pt, KaehlerDifferential.D_apply, CommRingCat.coproductCocone_inr, AlgebraicGeometry.pullbackSpecIso_inv_fst'_assoc, MvPolynomial.finitePresentation_universalFactorizationMap, Algebra.QuasiFinite.baseChange, Algebra.FormallySmooth.instTensorProduct, Algebra.FormallyEtale.instTensorProduct, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_auxβ‚‚, MvPolynomial.finite_universalFactorizationMap, MvPolynomial.universalFactorizationMapPresentation_map, Algebra.IsStandardSmooth.baseChange, Algebra.Unramified.baseChange, AlgebraicGeometry.pullbackSpecIso_inv_fst, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CommRingCat.coproductCocone_pt, MvPolynomial.universalFactorizationMapPresentation_relation, CommAlgCat.binaryCofan_inl, Algebra.Smooth.baseChange, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, AlgebraicGeometry.pullbackSpecIso_inv_fst_assoc, KaehlerDifferential.D_tensorProductTo, Algebra.FormallyUnramified.base_change, CommRingCat.coproductCoconeIsColimit_desc, AlgebraicGeometry.pullbackSpecIso_hom_fst, TensorProduct.toIntegralClosure_injective_of_flat, RingHom.Finite.tensorProductMap, Algebra.Etale.baseChange, AlgebraicGeometry.pullbackSpecIso_hom_base_assoc, AlgebraicGeometry.pullbackSpecIso_hom_fst'_assoc, AlgebraicGeometry.pullbackSpecIso_inv_fst', MvPolynomial.universalFactorizationMapPresentation_algebra_smul, Matrix.det_kroneckerTMul, CommAlgCat.binaryCofan_inr, MvPolynomial.universalFactorizationMapPresentation_val, AlgebraicGeometry.diagonal_Spec_map, MvPolynomial.universalFactorizationMapPresentation_Οƒ', RingHom.SurjectiveOnStalks.baseChange', Derivation.liftKaehlerDifferential_apply, Algebra.Presentation.baseChange_relation, KaehlerDifferential.DLinearMap_apply, AlgebraicGeometry.pullbackSpecIso_hom_fst', MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, Algebra.instIsStandardEtaleTensorProduct, Algebra.WeaklyQuasiFiniteAt.baseChange, AlgebraicGeometry.pullbackSpecIso_hom_snd, Algebra.EssFiniteType.baseChange, CommRingCat.coproductCocone_ΞΉ, AlgebraicGeometry.pullbackSpecIso_hom_fst_assoc, Algebra.PreSubmersivePresentation.baseChange_ring, Algebra.Presentation.baseChange_toGenerators, MvPolynomial.universalFactorizationMapPresentation_jacobian, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc
instCommSemiring πŸ“–CompOp
39 mathmath: PrimeSpectrum.preimageEquivFiber_symm_apply_coe, MvPolynomial.rTensorAlgEquiv_apply, IsLocalization.mk'_tmul, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, PrimeSpectrum.isOpenMap_comap_algebraMap_tensorProduct_of_field, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, IsLocalization.Away.tensorRight, TensorProduct.isPushout, MvPolynomial.rTensorAlgHom_toLinearMap, MvPolynomial.universalFactorizationMapPresentation_map, PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux, MvPolynomial.universalFactorizationMapPresentation_relation, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, MvPolynomial.coeff_rTensorAlgHom_tmul, PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable, MvPolynomial.ker_evalβ‚‚Hom_universalFactorizationMap, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, IsLocalization.Away.tensor, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, IsLocalization.tmul_mk', MvPolynomial.coeff_rTensorAlgHom_monomial_tmul, Algebra.instIsStandardOpenImmersionTensorProduct, PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable, IsLocalization.tensorRight, IsLocalization.tensor, PrimeSpectrum.continuous_tensorProductTo, algEquivIncludeRange_symm_toAlgHom, MvPolynomial.aeval_one_tmul, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, MvPolynomial.universalFactorizationMapPresentation_val, MvPolynomial.universalFactorizationMapPresentation_Οƒ', PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, TensorProduct.isPushout', MvPolynomial.universalFactorizationMapPresentation_jacobian, MvPolynomial.rTensorAlgHom_apply_eq
instMul πŸ“–CompOp
23 mathmath: Algebra.FormallyUnramified.one_tmul_mul_elem, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, Algebra.FormallyUnramified.finite_of_free_aux, piRightHom_mul, RingHom.SurjectiveOnStalks.exists_mul_eq_tmul, algEquivIncludeRange_symm_tmul, SemiconjBy.tmul, LinearMap.map_mul_of_map_mul_tmul, tmul_mul_tmul, Matrix.kroneckerTMulStarAlgEquiv_apply, kroneckerTMulLinearEquiv_mul, Bialgebra.comul_mul, Algebra.FormallyUnramified.one_tmul_sub_tmul_one_mul_elem, Commute.tmul, MatrixEquivTensor.invFun_smul, linearEquivIncludeRange_symm_tmul, Derivation.tensorProductTo_mul, PolyEquivTensor.invFun_monomial, Matrix.mul_kroneckerTMul_mul, Matrix.kroneckerStarAlgEquiv_apply, Algebra.FormallyUnramified.iff_exists_tensorProduct, Matrix.kroneckerStarAlgEquiv_symm_apply, MvPolynomial.universalFactorizationMapPresentation_jacobian
instNonAssocRing πŸ“–CompOpβ€”
instNonAssocSemiring πŸ“–CompOp
5 mathmath: includeLeftRingHom_comp_algebraMap, algebraMap_def, ringHom_ext_iff, Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, includeLeftRingHom_apply
instNonUnitalNonAssocRing πŸ“–CompOpβ€”
instNonUnitalNonAssocSemiring πŸ“–CompOp
8 mathmath: sMulCommClass_right, isScalarTower_right, LinearMap.mulRight_tmul, LinearMap.mulLeft_tmul, TensorProduct.map_convMul_map, LinearMap.mul'_tensor, Bialgebra.mul_comprβ‚‚_comul, TensorProduct.Algebra.mul'_comp_tensorTensorTensorComm
instNonUnitalRing πŸ“–CompOpβ€”
instNonUnitalSemiring πŸ“–CompOpβ€”
instOneTensorProduct πŸ“–CompOp
13 mathmath: GradedTensorProduct.auxEquiv_one, GradedTensorProduct.auxEquiv_symm_one, kroneckerTMulLinearEquiv_one, TensorProduct.gradedComm_one, TensorProduct.gradedMul_one, piRightHom_one, Bialgebra.comul_one, Matrix.one_kroneckerTMul_one, TensorProduct.one_gradedMul, GradedTensorProduct.of_one, GradedTensorProduct.of_symm_one, one_def, MvPolynomial.universalFactorizationMapPresentation_jacobian
instRing πŸ“–CompOp
31 mathmath: intCast_def', BialgCat.rightUnitor_def, HopfAlgCat.rightUnitor_def, Algebra.IsIntegral.tensorProduct, HopfAlgCat.tensorObj_instRing, BialgCat.associator_def, BialgCat.whiskerLeft_def, HopfAlgCat.whiskerLeft_def, IsPurelyInseparable.exists_pow_mem_range_tensorProduct, Algebra.IsAlgebraic.tensorProduct, KaehlerDifferential.End_equiv_aux, HopfAlgCat.whiskerRight_def, KaehlerDifferential.D_apply, KaehlerDifferential.one_smul_sub_smul_one_mem_ideal, HopfAlgCat.associator_def, BialgCat.tensorHom_def, Algebra.FormallyUnramified.one_tmul_sub_tmul_one_mul_elem, BialgCat.whiskerRight_def, KaehlerDifferential.submodule_span_range_eq_ideal, BialgCat.tensorObj_def, HopfAlgCat.tensorHom_def, IsIntegral.tmul, TensorProduct.tmul_of_gradedMul_of_tmul, KaehlerDifferential.span_range_eq_ideal, IsAlgebraic.tmul, HopfAlgCat.leftUnitor_def, KaehlerDifferential.DLinearMap_apply, BialgCat.leftUnitor_def, IsPurelyInseparable.exists_pow_pow_mem_range_tensorProduct_of_expChar, Algebra.FormallyUnramified.iff_exists_tensorProduct, closure_range_union_range_eq_top
instSemiring πŸ“–CompOp
384 mathmath: congr_trans, exists_fg_and_mem_baseChange, CliffordAlgebra.toBaseChange_reverse, Subalgebra.mulMap_comm, Bialgebra.comulAlgHom_apply, algEquivOfLinearEquivTripleTensorProduct_apply, Ideal.comap_fiberIsoOfBijectiveResidueField_apply, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right, instSMulCommClassTensorProduct, lift_comp_includeLeft, RingHom.SurjectiveOnStalks.baseChange, prodRight_tmul_fst, PrimeSpectrum.preimageEquivFiber_symm_apply_coe, MvPolynomial.rTensorAlgEquiv_apply, AlgCat.hom_inv_associator, includeLeft_map_center_le, MvPolynomial.universalFactorizationMap_comp_map, Subalgebra.LinearDisjoint.include_range, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', CommAlgCat.braiding_hom_hom, Algebra.IsPushout.equiv_symm_algebraMap_left, Bialgebra.TensorProduct.map_toAlgHom, Polynomial.fiberEquivQuotient_tmul, congr_symm_apply, TensorProduct.toIntegralClosure_bijective_of_isLocalization, mapOfCompatibleSMul_surjective, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, PolyEquivTensor.right_inv, Algebra.FormallyUnramified.lmul_elem, instLiesOverFiberOfIsPrime, MonoidAlgebra.tensorEquiv.invFun_tmul, AlgebraicGeometry.diagonal_SpecMap, Algebra.FormallyUnramified.isOpenImmersion_SpecMap_lmul, prodRight_symm_tmul, tensorTensorTensorComm_symm, map_comp, AlgCat.hom_inv_rightUnitor, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, Bialgebra.TensorProduct.counitAlgHom_def, algebraMap_apply, CliffordAlgebra.equivBaseChange_symm_apply, instIsLocalRingTensorProductResidueFieldOfIsLocalHomRingHomAlgebraMap, Subalgebra.mulMap_toLinearMap, piScalarRight_tmul, KaehlerDifferential.isScalarTower', AlgHom.mulLeftRightMatrix.inv_comp, BialgCat.associator_def, Module.endTensorEndAlgHom_apply, comm_comp_map_apply, PolyEquivTensor.toFunAlgHom_apply_tmul, IsPurelyInseparable.exists_pow_mem_range_tensorProduct, assoc_tmul, Subalgebra.comm_trans_rTensorBot, Subalgebra.mulMap_map_comp_eq, KaehlerDifferential.ideal_fg, map_tmul, TensorProduct.toIntegralClosure_bijective_of_smooth, Algebra.instIsReducedTensorProductOfIsAlgebraicOfIsGeometricallyReduced, Algebra.isGeometricallyReduced_iff, algEquivIncludeRange_symm_tmul, leftComm_tmul, includeRight_apply, CliffordAlgebra.ofBaseChange_toBaseChange, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, linearEquivIncludeRange_toLinearMap, Matrix.toAlgEquiv_kroneckerStarAlgEquiv, Bialgebra.TensorProduct.map_toCoalgHom, CliffordAlgebra.toBaseChange_comp_ofBaseChange, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, lid_tmul, Matrix.toAlgEquiv_kroneckerTMulStarAlgEquiv, tensorTensorTensorComm_symm_tmul, TensorProduct.Algebra.smul_def, mem_adjoin_map_integralClosure_of_isStandardEtale, includeLeft_apply, Ideal.Fiber.lift_residueField_surjective, CliffordAlgebra.toBaseChange_comp_involute, right_algebraMap_apply, Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, CommRingCat.pushoutCocone_inr, Ideal.map_includeRight_eq, includeLeft_bijective, AlgebraicGeometry.pullbackSpecIso_inv_snd, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, AlgCat.hom_hom_associator, MonoidAlgebra.scalarTensorEquiv_tmul, Bialgebra.TensorProduct.comulAlgHom_def, PrimeSpectrum.isOpenMap_comap_algebraMap_tensorProduct_of_field, map_ker, AddMonoidAlgebra.tensorEquiv.invFun_tmul, includeRight_map_center_le, productMap_left_apply, instSMulCommClassTensorProduct_1, algebraMap_eq_includeRight, CommRingCat.coproductCocone_inl, Subalgebra.lTensorBot_one_tmul, productMap_left, Subalgebra.mulMap_bot_left_eq, includeLeftRingHom_comp_algebraMap, productMap_apply_tmul, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, AlgHom.coe_tensorEqualizer, TensorProduct.toIntegralClosure_mvPolynomial_bijective, lmul'_apply_tmul, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, includeLeft_injective, RingHom.SurjectiveOnStalks.tensorProductMap, algEquivOfLinearEquivTensorProduct_apply, PrimeSpectrum.mem_image_comap_basicOpen, TensorProduct.gradedComm_algebraMap, CommRingCat.isPushout_tensorProduct, opAlgEquiv_apply, Algebra.FiniteType.baseChangeAux_surj, LinearMap.tensorProductEnd_apply, Bialgebra.TensorProduct.assoc_tmul, Matrix.kroneckerAlgEquiv_apply, CommRingCat.coproductCocone_inr, polyEquivTensor_symm_apply_tmul, KaehlerDifferential.one_smul_sub_smul_one_mem_ideal, IsAzumaya.mulLeftRight_comp_congr, algebraMap_def, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, HopfAlgCat.associator_def, includeRight_injective, MvPolynomial.tensorEquivSum_one_tmul_C, AlgHom.mulLeftRight_apply, commRight_tmul, lmul'_comp_map, IsAzumaya.bij, lift_comp_includeRight, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, MonoidAlgebra.tensorEquiv_symm_single, map_id, Bialgebra.comul_algebraMap, AlgCat.hom_hom_rightUnitor, isField_of_isAlgebraic, congr_toLinearEquiv, Subalgebra.mulMap'_surjective, leftComm_toLinearEquiv, congr_apply, toLinearEquiv_tensorTensorTensorComm, MvPolynomial.rTensorAlgHom_toLinearMap, coe_polyEquivTensor'_symm, Subbimodule.coe_mk, MvPolynomial.universalFactorizationMapPresentation_map, MvPolynomial.algebraTensorAlgEquiv_symm_X, Matrix.kroneckerTMulAlgEquiv_symm_apply, coe_polyEquivTensor', includeRight_bijective, AlgCat.hom_inv_leftUnitor, liftEquiv_apply, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, not_isField_of_transcendental, productMap_range, Bialgebra.TensorProduct.rid_toAlgEquiv, productMap_eq_comp_map, CliffordAlgebra.ofBaseChange_tmul_ΞΉ, rid_tmul, lmul'_comp_includeRight, Algebra.pushoutDesc_apply, cancelBaseChange_tmul, map_comp_id, AlgCat.hom_hom_leftUnitor, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left, MvPolynomial.universalFactorizationMapPresentation_relation, congr_refl, Subbimodule.coe_toSubbimoduleInt, Subalgebra.rTensorBot_tmul_one, map_surjective, IsAzumaya.coe_tensorEquivEnd, AlgHom.tensorEqualizerEquiv_apply, MonoidAlgebra.tensorEquiv_tmul, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, TensorProduct.Algebra.linearMap_comp_mul', comm_comp_includeRight, CliffordAlgebra.toBaseChange_ofBaseChange, matrixEquivTensor_apply_single, cancelBaseChange_symm_tmul, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, MvPolynomial.coeff_rTensorAlgHom_tmul, comm_comp_includeLeft, Subbimodule.coe_toSubbimoduleNat, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, assoc_toLinearEquiv, assoc_symm_tmul, opAlgEquiv_symm_apply, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, matrixEquivTensor_apply_symm, Bialgebra.TensorProduct.map_tmul, Subalgebra.mulMap_bot_right_eq, linearEquivIncludeRange_symm_tmul, algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, MatrixEquivTensor.left_inv, CliffordAlgebra.toBaseChange_comp_reverseOp, PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable, Subalgebra.lTensorBot_symm_apply, Algebra.Etale.exists_subalgebra_fg, KaehlerDifferential.submodule_span_range_eq_ideal, AlgebraicGeometry.pullbackSpecIso_inv_snd_assoc, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, map_range, tmul_pow, map_comp_includeRight, MvPolynomial.ker_evalβ‚‚Hom_universalFactorizationMap, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, Subalgebra.tmul_mem_baseChange, CommAlgCat.braiding_inv_hom, Algebra.Smooth.exists_finiteType, Algebra.IsPushout.equiv_tmul, AddMonoidAlgebra.tensorEquiv_tmul, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, CommAlgCat.associator_inv_hom, tensorTensorTensorComm_toLinearEquiv, ext_iff, KaehlerDifferential.D_tensorProductTo, algEquivIncludeRange_toAlgHom, AddMonoidAlgebra.tensorEquiv_symm_single, Derivation.tensorProductTo_mul, comm_symm_tmul, MonoidAlgebra.scalarTensorEquiv_symm_single, Subbimodule.coe_toSubmodule, quotIdealMapEquivTensorQuot_symm_tmul, PolyEquivTensor.invFun_monomial, Subalgebra.linearDisjoint_iff_injective, Subbimodule.coe_toSubmodule', isNilpotent_tensor_residueField_iff, BialgHomClass.map_comp_comulAlgHom, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, CommRingCat.coproductCoconeIsColimit_desc, piRight_tmul, PolyEquivTensor.left_inv, CliffordAlgebra.equivBaseChange_apply, Subalgebra.lTensorBot_tmul, MvPolynomial.tensorEquivSum_X_tmul_X, MvPolynomial.coeff_rTensorAlgHom_monomial_tmul, TensorProduct.toIntegralClosure_injective_of_flat, MvPolynomial.algebraTensorAlgEquiv_symm_map, productMap_right_apply, Bialgebra.TensorProduct.lid_toAlgEquiv, MvPolynomial.tensorEquivSum_C_tmul_one, Subbimodule.coe_baseChange, Matrix.kroneckerAlgEquiv_symm_apply, algHomOfLinearMapTensorProduct_apply, polyEquivTensor_apply, Algebra.Presentation.algebraTensorAlgEquiv_symm_relation, Subalgebra.LinearDisjoint.val_mulMap_tmul, right_isScalarTower, algebraMap_apply', Algebra.TensorProduct.commRight_symm_tmul, Subalgebra.mulMap_range, lift_tmul, RingHom.Finite.tensorProductMap, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, Subalgebra.rTensorBot_symm_apply, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_tmul, lTensor_ker, linearEquivIncludeRange_symm_toLinearMap, MvPolynomial.pderiv_inr_universalFactorizationMap_X, tensorTensorTensorComm_tmul, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, IntermediateField.LinearDisjoint.isField_of_isAlgebraic', AddMonoidAlgebra.scalarTensorEquiv_symm_single, Algebra.baseChange_lmul, lift_comp_includeRight', Bialgebra.comul_pow, quotIdealMapEquivTensorQuot_mk, CliffordAlgebra.toBaseChange_involute, Matrix.kroneckerTMulAlgEquiv_apply, MvPolynomial.algebraTensorAlgEquiv_tmul, comm_tmul, Bialgebra.TensorProduct.assoc_toCoalgEquiv, PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable, KaehlerDifferential.span_range_eq_ideal, lmul'_comp_includeLeft, MatrixEquivTensor.right_inv, opAlgEquiv_tmul, rid_toLinearEquiv, Bialgebra.TensorProduct.lid_toCoalgEquiv, Bialgebra.TensorProduct.rid_symm_apply, algEquivIncludeRange_symm_toAlgHom, Subalgebra.comm_trans_lTensorBot, comm_comp_map, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, Matrix.toLinearEquiv_kroneckerAlgEquiv, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, MvPolynomial.tensorEquivSum_one_tmul_X, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, CliffordAlgebra.ofBaseChange_tmul_one, MvPolynomial.universalFactorizationMap_freeMonic, MvPolynomial.universalFactorizationMapPresentation_val, prodRight_tmul, prodRight_tmul_snd, AlgebraicGeometry.diagonal_Spec_map, MvPolynomial.universalFactorizationMapPresentation_Οƒ', map_restrictScalars_comp_includeRight, CommAlgCat.associator_hom_hom, liftEquiv_symm_apply_coe, Algebra.IsPushout.equiv_symm_algebraMap_right, Bialgebra.TensorProduct.rid_tmul, CliffordAlgebra.toBaseChange_ΞΉ, Bialgebra.TensorProduct.lid_tmul, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, includeRight_surjective, lmul'_toLinearMap, Subalgebra.val_mulMap'_tmul, Ideal.comap_fiberIsoOfBijectiveResidueField_symm, RingHom.SurjectiveOnStalks.baseChange', TensorProduct.antipode_def, Bialgebra.toLinearMap_comulAlgHom, Algebra.FinitePresentation.baseChange, lmul''_eq_lid_comp_mapOfCompatibleSMul, productMap_right, Subalgebra.LinearDisjoint.isDomain, PrimeSpectrum.mem_image_comap_zeroLocus_sdiff, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, Bialgebra.TensorProduct.lid_symm_apply, Bialgebra.TensorProduct.rid_toCoalgEquiv, AddMonoidAlgebra.scalarTensorEquiv_tmul, IntermediateField.LinearDisjoint.isField_of_forall, IntermediateField.LinearDisjoint.isDomain', MvPolynomial.algebraTensorAlgEquiv_symm_monomial, ringHom_ext_iff, toLinearMap_map, adjoin_tmul_eq_top, Bialgebra.mul_comprβ‚‚_comul, Subalgebra.mulMap_tmul, map_id_comp, piScalarRight_tmul_apply, lidOfCompatibleSMul_tmul, MvPolynomial.tensorEquivSum_X_tmul_one, AlgebraicGeometry.pullbackSpecIso_hom_snd, map_bijective, Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, matrixEquivTensor_apply, MatrixEquivTensor.toFunAlgHom_apply, Algebra.QuasiFinite.instIsArtinianRingFiber, opAlgEquiv_symm_tmul, IntermediateField.LinearDisjoint.isDomain, lid_toLinearEquiv, Algebra.FiniteType.baseChange, IsPurelyInseparable.exists_pow_pow_mem_range_tensorProduct_of_expChar, lid_symm_apply, leftComm_symm_tmul, MvPolynomial.tensorEquivSum_C_tmul_C, Subalgebra.rTensorBot_tmul, CliffordAlgebra.ofBaseChange_comp_toBaseChange, congr_symm, Algebra.FormallyUnramified.iff_exists_tensorProduct, comm_toLinearEquiv, Bialgebra.TensorProduct.assoc_symm_tmul, Ideal.map_includeLeft_eq, Bialgebra.TensorProduct.assoc_toAlgEquiv, rid_symm_apply, rTensor_ker, map_comp_includeLeft, Subalgebra.LinearDisjoint.isDomain_of_injective, mapOfCompatibleSMul_tmul, CommRingCat.coproductCocone_ΞΉ, polyEquivTensor_symm_apply_tmul_eq_smul, AlgebraicGeometry.Proj.lift_awayMapₐ_awayMapₐ_surjective, IntermediateField.LinearDisjoint.isField_of_isAlgebraic, comm_symm, lift_includeLeft_includeRight, linearEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_fg, includeLeft_surjective, adjoin_one_tmul_image_eq_top, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, AlgHom.mulLeftRightMatrix.comp_inv, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, MvPolynomial.universalFactorizationMapPresentation_jacobian, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap, IsAzumaya.AlgHom.mulLeftRight_bij, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap', MvPolynomial.pderiv_inl_universalFactorizationMap_X, closure_range_union_range_eq_top, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val, AlgebraicGeometry.pullbackSpecIso_hom_snd_assoc, MvPolynomial.rTensorAlgHom_apply_eq
leftAlgebra πŸ“–CompOp
272 mathmath: CommRingCat.tensorProd_map_right, congr_trans, exists_fg_and_mem_baseChange, CliffordAlgebra.toBaseChange_reverse, Algebra.Generators.baseChange_val, Ideal.comap_fiberIsoOfBijectiveResidueField_apply, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right, lift_comp_includeLeft, RingHom.SurjectiveOnStalks.baseChange, prodRight_tmul_fst, MvPolynomial.rTensorAlgEquiv_apply, AlgCat.hom_inv_associator, includeLeft_map_center_le, MvPolynomial.universalFactorizationMap_comp_map, Subalgebra.LinearDisjoint.include_range, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', Algebra.IsPushout.equiv_symm_algebraMap_left, Bialgebra.TensorProduct.map_toAlgHom, Algebra.IsIntegral.tensorProduct, Polynomial.fiberEquivQuotient_tmul, congr_symm_apply, TensorProduct.toIntegralClosure_bijective_of_isLocalization, mapOfCompatibleSMul_surjective, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, MonoidAlgebra.tensorEquiv.invFun_tmul, prodRight_symm_tmul, tensorTensorTensorComm_symm, Algebra.QuasiFiniteAt.baseChange, map_comp, AlgCat.hom_inv_rightUnitor, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, Bialgebra.TensorProduct.counitAlgHom_def, algebraMap_apply, Algebra.PreSubmersivePresentation.baseChange_jacobian, CliffordAlgebra.equivBaseChange_symm_apply, piScalarRight_tmul, Module.endTensorEndAlgHom_apply, comm_comp_map_apply, Algebra.IsStandardSmoothOfRelativeDimension.baseChange, IsPurelyInseparable.exists_pow_mem_range_tensorProduct, assoc_tmul, Algebra.IsAlgebraic.tensorProduct, Subalgebra.mulMap_map_comp_eq, map_tmul, TensorProduct.toIntegralClosure_bijective_of_smooth, algEquivIncludeRange_symm_tmul, Algebra.IsUnramifiedAt.residueField, CliffordAlgebra.ofBaseChange_toBaseChange, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, linearEquivIncludeRange_toLinearMap, Bialgebra.TensorProduct.map_toCoalgHom, CliffordAlgebra.toBaseChange_comp_ofBaseChange, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, Matrix.toAlgEquiv_kroneckerTMulStarAlgEquiv, tensorTensorTensorComm_symm_tmul, includeLeft_apply, Ideal.Fiber.lift_residueField_surjective, CliffordAlgebra.toBaseChange_comp_involute, Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, includeLeft_bijective, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, AlgCat.hom_hom_associator, MonoidAlgebra.scalarTensorEquiv_tmul, Algebra.PreSubmersivePresentation.baseChange_toPresentation, Bialgebra.TensorProduct.comulAlgHom_def, PrimeSpectrum.isOpenMap_comap_algebraMap_tensorProduct_of_field, map_ker, AddMonoidAlgebra.tensorEquiv.invFun_tmul, CommRingCat.coproductCocone_inl, KaehlerDifferential.End_equiv_aux, AlgHom.coe_tensorEqualizer, TensorProduct.toIntegralClosure_mvPolynomial_bijective, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, includeLeft_injective, RingHom.SurjectiveOnStalks.tensorProductMap, algEquivOfLinearEquivTensorProduct_apply, PrimeSpectrum.mem_image_comap_basicOpen, opAlgEquiv_apply, Algebra.FiniteType.baseChangeAux_surj, LinearMap.tensorProductEnd_apply, Bialgebra.TensorProduct.assoc_tmul, AlgebraicGeometry.pullbackSpecIso_inv_fst'_assoc, IsAzumaya.mulLeftRight_comp_congr, algebraMap_def, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, MvPolynomial.tensorEquivSum_one_tmul_C, commRight_tmul, lmul'_comp_map, Algebra.QuasiFinite.baseChange, lift_comp_includeRight, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, MonoidAlgebra.tensorEquiv_symm_single, map_id, AlgCat.hom_hom_rightUnitor, Algebra.FormallySmooth.instTensorProduct, Algebra.FormallyEtale.instTensorProduct, congr_toLinearEquiv, TensorProduct.isPushout, congr_apply, toLinearEquiv_tensorTensorTensorComm, MvPolynomial.rTensorAlgHom_toLinearMap, coe_polyEquivTensor'_symm, MvPolynomial.algebraTensorAlgEquiv_symm_X, Algebra.IsStandardSmooth.baseChange, Matrix.kroneckerTMulAlgEquiv_symm_apply, coe_polyEquivTensor', Algebra.Unramified.baseChange, liftEquiv_apply, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, Bialgebra.TensorProduct.rid_toAlgEquiv, productMap_eq_comp_map, CliffordAlgebra.ofBaseChange_tmul_ΞΉ, rid_tmul, Algebra.pushoutDesc_apply, cancelBaseChange_tmul, map_comp_id, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left, MvPolynomial.universalFactorizationMapPresentation_relation, congr_refl, map_surjective, AlgHom.tensorEqualizerEquiv_apply, MonoidAlgebra.tensorEquiv_tmul, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, Algebra.Smooth.baseChange, CliffordAlgebra.toBaseChange_ofBaseChange, cancelBaseChange_symm_tmul, MvPolynomial.coeff_rTensorAlgHom_tmul, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, assoc_toLinearEquiv, assoc_symm_tmul, opAlgEquiv_symm_apply, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, Bialgebra.TensorProduct.map_tmul, linearEquivIncludeRange_symm_tmul, algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, CliffordAlgebra.toBaseChange_comp_reverseOp, PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable, Algebra.Etale.exists_subalgebra_fg, KaehlerDifferential.submodule_span_range_eq_ideal, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, map_range, map_comp_includeRight, MvPolynomial.ker_evalβ‚‚Hom_universalFactorizationMap, Subalgebra.tmul_mem_baseChange, Algebra.Smooth.exists_finiteType, Algebra.IsPushout.equiv_tmul, AddMonoidAlgebra.tensorEquiv_tmul, Algebra.IsPushout.tensorProduct_tensorProduct, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, CommAlgCat.associator_inv_hom, tensorTensorTensorComm_toLinearEquiv, ext_iff, algEquivIncludeRange_toAlgHom, AddMonoidAlgebra.tensorEquiv_symm_single, IsLocalization.Away.tensor, MonoidAlgebra.scalarTensorEquiv_symm_single, quotIdealMapEquivTensorQuot_symm_tmul, Algebra.FormallyUnramified.base_change, isNilpotent_tensor_residueField_iff, BialgHomClass.map_comp_comulAlgHom, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, IsLocalization.tmul_mk', CommRingCat.coproductCoconeIsColimit_desc, piRight_tmul, CliffordAlgebra.equivBaseChange_apply, MvPolynomial.tensorEquivSum_X_tmul_X, MvPolynomial.coeff_rTensorAlgHom_monomial_tmul, TensorProduct.toIntegralClosure_injective_of_flat, MvPolynomial.algebraTensorAlgEquiv_symm_map, MvPolynomial.tensorEquivSum_C_tmul_one, algHomOfLinearMapTensorProduct_apply, polyEquivTensor_apply, Algebra.Presentation.algebraTensorAlgEquiv_symm_relation, Algebra.TensorProduct.commRight_symm_tmul, Algebra.instIsStandardOpenImmersionTensorProduct, lift_tmul, RingHom.Finite.tensorProductMap, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, Algebra.Etale.baseChange, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_tmul, lTensor_ker, linearEquivIncludeRange_symm_toLinearMap, MvPolynomial.pderiv_inr_universalFactorizationMap_X, tensorTensorTensorComm_tmul, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, IsIntegral.tmul, AddMonoidAlgebra.scalarTensorEquiv_symm_single, Algebra.baseChange_lmul, lift_comp_includeRight', quotIdealMapEquivTensorQuot_mk, CliffordAlgebra.toBaseChange_involute, Matrix.kroneckerTMulAlgEquiv_apply, MvPolynomial.algebraTensorAlgEquiv_tmul, Bialgebra.TensorProduct.assoc_toCoalgEquiv, PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable, IsLocalization.tensor, opAlgEquiv_tmul, rid_toLinearEquiv, AlgebraicGeometry.pullbackSpecIso_hom_fst'_assoc, Bialgebra.TensorProduct.rid_symm_apply, algEquivIncludeRange_symm_toAlgHom, AlgebraicGeometry.pullbackSpecIso_inv_fst', IsAlgebraic.tmul, comm_comp_map, MvPolynomial.tensorEquivSum_one_tmul_X, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, CliffordAlgebra.ofBaseChange_tmul_one, MvPolynomial.universalFactorizationMap_freeMonic, prodRight_tmul, prodRight_tmul_snd, MvPolynomial.universalFactorizationMapPresentation_Οƒ', map_restrictScalars_comp_includeRight, CommAlgCat.associator_hom_hom, liftEquiv_symm_apply_coe, Algebra.IsPushout.equiv_symm_algebraMap_right, Bialgebra.TensorProduct.rid_tmul, CliffordAlgebra.toBaseChange_ΞΉ, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, Ideal.comap_fiberIsoOfBijectiveResidueField_symm, Algebra.Presentation.baseChange_relation, Algebra.FinitePresentation.baseChange, lmul''_eq_lid_comp_mapOfCompatibleSMul, AlgebraicGeometry.pullbackSpecIso_hom_fst', PrimeSpectrum.mem_image_comap_zeroLocus_sdiff, Bialgebra.TensorProduct.rid_toCoalgEquiv, AddMonoidAlgebra.scalarTensorEquiv_tmul, MvPolynomial.algebraTensorAlgEquiv_symm_monomial, toLinearMap_map, Algebra.instIsStandardEtaleTensorProduct, map_id_comp, piScalarRight_tmul_apply, Algebra.WeaklyQuasiFiniteAt.baseChange, lidOfCompatibleSMul_tmul, TensorProduct.isPushout', MvPolynomial.tensorEquivSum_X_tmul_one, map_bijective, IsLocalization.tensorProduct_tensorProduct, Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, opAlgEquiv_symm_tmul, Algebra.FiniteType.baseChange, IsPurelyInseparable.exists_pow_pow_mem_range_tensorProduct_of_expChar, MvPolynomial.tensorEquivSum_C_tmul_C, CliffordAlgebra.ofBaseChange_comp_toBaseChange, congr_symm, Bialgebra.TensorProduct.assoc_symm_tmul, Ideal.map_includeLeft_eq, Bialgebra.TensorProduct.assoc_toAlgEquiv, rid_symm_apply, rTensor_ker, map_comp_includeLeft, mapOfCompatibleSMul_tmul, Algebra.EssFiniteType.baseChange, CommRingCat.coproductCocone_ΞΉ, AlgebraicGeometry.Proj.lift_awayMapₐ_awayMapₐ_surjective, Algebra.PreSubmersivePresentation.baseChange_ring, lift_includeLeft_includeRight, linearEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_fg, includeLeft_surjective, adjoin_one_tmul_image_eq_top, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, Algebra.Presentation.baseChange_toGenerators, MvPolynomial.pderiv_inl_universalFactorizationMap_X, closure_range_union_range_eq_top, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val, MvPolynomial.rTensorAlgHom_apply_eq
mul πŸ“–CompOp
4 mathmath: mul_one, one_mul, mul_assoc, mul_apply
rightAlgebra πŸ“–CompOp
15 mathmath: instSMulCommClassTensorProduct, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, IsLocalization.mk'_tmul, right_algebraMap_apply, instSMulCommClassTensorProduct_1, algebraMap_eq_includeRight, IsLocalization.Away.tensorRight, commRight_tmul, TensorProduct.isPushout, right_isScalarTower, Algebra.TensorProduct.commRight_symm_tmul, IsLocalization.tensorRight, TensorProduct.isPushout', Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_one_tmul_image_eq_top πŸ“–mathematicalAlgebra.adjoin
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
instSemiring
leftAlgebra
Algebra.id
Algebra.to_smulCommClass
Set.image
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
Algebra.toSubmodule_eq_top
top_le_iff
Algebra.map_top
Submodule.baseChange_top
RingHomSurjective.ids
TensorProduct.smulCommClass_left
smulCommClass_self
Submodule.baseChange_eq_span
Submodule.map_top
Algebra.span_le_adjoin
AlgHom.map_adjoin
Set.image_congr
Algebra.adjoin_adjoin_of_tower
TensorProduct.isScalarTower_left
IsScalarTower.right
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
CommSemiring.toSemiring
instSemiring
RingHom.instFunLike
algebraMap
leftAlgebra
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
algebraMap_apply' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
CommSemiring.toSemiring
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”algebraMap_apply
Algebra.algebraMap_eq_smul_one
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
algebraMap_def πŸ“–mathematicalβ€”algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instSemiring
leftAlgebra
RingHom.comp
CommSemiring.toSemiring
instNonAssocSemiring
Algebra.to_smulCommClass
IsScalarTower.right
includeLeftRingHom
β€”β€”
algebraMap_eq_includeRight πŸ“–mathematicalβ€”algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
instSemiring
rightAlgebra
RingHomClass.toRingHom
AlgHom
instAlgebra
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
includeRight
β€”β€”
closure_range_union_range_eq_top πŸ“–mathematicalβ€”Subring.closure
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Algebra.toModule
instRing
Set
Set.instUnion
Set.range
DFunLike.coe
AlgHom
instSemiring
leftAlgebra
AlgHom.funLike
includeLeft
instAlgebra
includeRight
Top.top
Subring
Subring.instTop
β€”top_le_iff
TensorProduct.induction_on
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
Algebra.to_smulCommClass
IsScalarTower.right
mul_one
one_mul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Subring.subset_closure
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
ext πŸ“–β€”AlgHom.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instSemiring
leftAlgebra
IsScalarTower.to_smulCommClass
CommSemiring.toSemiring
includeLeft
instAlgebra
AlgHom.restrictScalars
TensorProduct.isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
includeRight
β€”β€”IsScalarTower.to_smulCommClass
TensorProduct.isScalarTower_left
AlgHom.toLinearMap_injective
TensorProduct.AlgebraTensorModule.curry_injective
LinearMap.ext
AlgHom.congr_fun
mul_one
one_mul
Algebra.to_smulCommClass
IsScalarTower.right
tmul_mul_tmul
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
ext' πŸ“–β€”DFunLike.coe
AlgHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instSemiring
leftAlgebra
IsScalarTower.to_smulCommClass
CommSemiring.toSemiring
AlgHom.funLike
TensorProduct.tmul
β€”β€”IsScalarTower.to_smulCommClass
ext
AlgHom.ext
TensorProduct.isScalarTower_left
ext_iff πŸ“–mathematicalβ€”AlgHom.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instSemiring
leftAlgebra
IsScalarTower.to_smulCommClass
CommSemiring.toSemiring
includeLeft
instAlgebra
AlgHom.restrictScalars
TensorProduct.isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
includeRight
β€”IsScalarTower.to_smulCommClass
TensorProduct.isScalarTower_left
ext
includeLeftRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instNonAssocSemiring
Algebra.to_smulCommClass
IsScalarTower.right
RingHom.instFunLike
includeLeftRingHom
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
IsScalarTower.right
includeLeftRingHom_comp_algebraMap πŸ“–mathematicalβ€”RingHom.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
CommSemiring.toSemiring
instNonAssocSemiring
Algebra.to_smulCommClass
IsScalarTower.right
includeLeftRingHom
algebraMap
instSemiring
AlgHom.toRingHom
instAlgebra
includeRight
β€”RingHom.ext
Algebra.to_smulCommClass
IsScalarTower.right
AlgHom.comp_algebraMap_of_tower
IsScalarTower.left
TensorProduct.isScalarTower
includeLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instSemiring
leftAlgebra
AlgHom.funLike
includeLeft
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
includeLeft_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
AlgHom
instSemiring
leftAlgebra
AlgHom.funLike
includeLeft
β€”TensorProduct.flip_mk_surjective
includeRight_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instSemiring
instAlgebra
AlgHom.funLike
includeRight
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
includeRight_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Ring.toSemiring
Algebra.toModule
AlgHom
instSemiring
instAlgebra
AlgHom.funLike
includeRight
β€”TensorProduct.mk_surjective
instSMulCommClassTensorProduct πŸ“–mathematicalβ€”SMulCommClass
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.leftHasSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Semiring.toModule
Algebra.to_smulCommClass
Algebra.toSMul
instSemiring
rightAlgebra
β€”Algebra.to_smulCommClass
TensorProduct.induction_on
smul_zero
Algebra.smul_def
one_mul
smul_add
instSMulCommClassTensorProduct_1 πŸ“–mathematicalβ€”SMulCommClass
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.toSMul
instSemiring
rightAlgebra
TensorProduct.leftHasSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Semiring.toModule
Algebra.to_smulCommClass
β€”SMulCommClass.symm
Algebra.to_smulCommClass
instSMulCommClassTensorProduct
intCast_def πŸ“–mathematicalβ€”TensorProduct
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOne
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
β€”β€”
intCast_def' πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instRing
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”intCast_def
zsmul_one
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.int
isScalarTower_right πŸ“–mathematicalβ€”IsScalarTower
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
TensorProduct.leftHasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
TensorProduct.addZeroClass
DistribSMul.toSMulZeroClass
instDistribSMul
instNonUnitalNonAssocSemiring
β€”TensorProduct.induction_on
MulZeroClass.mul_zero
smul_zero
MulZeroClass.zero_mul
TensorProduct.smul_tmul'
tmul_mul_tmul
smul_mul_assoc
smul_add
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
mk_one_injective_of_isScalarTower πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Function.RightInverse.injective
TensorProduct.smulCommClass_left
smulCommClass_self
Algebra.to_smulCommClass
one_smul
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
mul
TensorProduct.tmul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”TensorProduct.smulCommClass_left
smulCommClass_self
mul_assoc πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
mul
β€”TensorProduct.smulCommClass_left
smulCommClass_self
RingHomCompTriple.ids
LinearMap.instSMulCommClass
SMulCommClass.symm
RingHomInvPair.ids
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
LinearMap.instIsScalarTower
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
mul_assoc
DFunLike.congr_fun
mul_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
mul
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”TensorProduct.induction_on
TensorProduct.smulCommClass_left
smulCommClass_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mul_one
map_add
SemilinearMapClass.toAddHomClass
natCast_def πŸ“–mathematicalβ€”TensorProduct
AddCommMonoidWithOne.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
TensorProduct.tmul
AddMonoidWithOne.toOne
β€”β€”
natCast_def' πŸ“–mathematicalβ€”TensorProduct
AddCommMonoidWithOne.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
TensorProduct.tmul
AddMonoidWithOne.toOne
β€”natCast_def
nsmul_one
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
AddCommMonoid.nat_isScalarTower
one_def πŸ“–mathematicalβ€”TensorProduct
AddCommMonoidWithOne.toAddCommMonoid
instOneTensorProduct
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
β€”β€”
one_mul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
mul
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”TensorProduct.induction_on
TensorProduct.smulCommClass_left
smulCommClass_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
one_mul
map_add
SemilinearMapClass.toAddHomClass
right_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
instSemiring
RingHom.instFunLike
algebraMap
rightAlgebra
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
right_isScalarTower πŸ“–mathematicalβ€”IsScalarTower
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.toSMul
instSemiring
rightAlgebra
TensorProduct.instSMul
β€”IsScalarTower.of_algebraMap_eq
AlgHom.commutes
ringHom_ext πŸ“–β€”RingHom.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instNonAssocSemiring
Algebra.to_smulCommClass
IsScalarTower.right
includeLeftRingHom
AlgHom.toRingHom
instSemiring
instAlgebra
includeRight
β€”β€”Algebra.to_smulCommClass
IsScalarTower.right
RingHom.ext
TensorProduct.induction_on
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_one
one_mul
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
ringHom_ext_iff πŸ“–mathematicalβ€”RingHom.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
instNonAssocSemiring
Algebra.to_smulCommClass
IsScalarTower.right
includeLeftRingHom
AlgHom.toRingHom
instSemiring
instAlgebra
includeRight
β€”Algebra.to_smulCommClass
IsScalarTower.right
ringHom_ext
sMulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
TensorProduct.leftHasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
TensorProduct.addZeroClass
DistribSMul.toSMulZeroClass
instDistribSMul
instNonUnitalNonAssocSemiring
β€”TensorProduct.induction_on
MulZeroClass.mul_zero
smul_zero
MulZeroClass.zero_mul
TensorProduct.smul_tmul'
tmul_mul_tmul
mul_smul_comm
add_mul
Distrib.rightDistribClass
smul_add
mul_add
Distrib.leftDistribClass
tmul_mul_tmul πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
instMul
TensorProduct.tmul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
tmul_pow πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
TensorProduct.tmul
β€”pow_zero
pow_succ

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
tmul πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.TensorProduct.instMul
TensorProduct.tmul
β€”SemiconjBy.tmul

LinearMap

Definitions

NameCategoryTheorems
liftBaseChange πŸ“–CompOp
16 mathmath: liftBaseChange_one_tmul, Algebra.Generators.liftBaseChange_injective_of_isLocalizationAway, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_comp_inl, KaehlerDifferential.tensorKaehlerEquiv_left_inv, Algebra.Generators.Cotangent.exact, liftBaseChange_tmul, Algebra.Generators.CotangentSpace.exact, range_liftBaseChange, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, Algebra.Generators.CotangentSpace.map_toComp_injective, liftBaseChange_comp, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inl, KaehlerDifferential.map_liftBaseChange_smul, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange
liftBaseChangeEquiv πŸ“–CompOp
3 mathmath: liftBaseChangeEquiv_symm_apply, IsBaseChange.endHom_apply, IsBaseChange.linearMapLeftRightHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
liftBaseChangeEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
LinearEquiv
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
liftBaseChangeEquiv
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
RingHomInvPair.ids
smulCommClass_self
IsScalarTower.to_smulCommClass
liftBaseChange_comp πŸ“–mathematicalβ€”comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
RingHom.id
RingHomCompTriple.ids
liftBaseChange
restrictScalars
IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
β€”TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.right
Algebra.to_smulCommClass
RingHomCompTriple.ids
IsScalarTower.compatibleSMul
ext_ring
IsScalarTower.to_smulCommClass
ext
one_smul
liftBaseChange_one_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
instFunLike
liftBaseChange
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
one_smul
liftBaseChange_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
instFunLike
liftBaseChange
TensorProduct.tmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Algebra.to_smulCommClass
mul'_tensor πŸ“–mathematicalβ€”mul'
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.TensorProduct.instNonUnitalNonAssocSemiring
TensorProduct.instModule
Algebra.TensorProduct.sMulCommClass_right
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Algebra.TensorProduct.isScalarTower_right
comp
TensorProduct.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct.map
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.tensorTensorTensorComm
β€”TensorProduct.ext_fourfold'
Algebra.TensorProduct.sMulCommClass_right
Algebra.TensorProduct.isScalarTower_right
RingHomCompTriple.ids
RingHomInvPair.ids
mulLeft_tmul πŸ“–mathematicalβ€”mulLeft
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
CommSemiring.toSemiring
Algebra.TensorProduct.instNonUnitalNonAssocSemiring
TensorProduct.instModule
Algebra.TensorProduct.sMulCommClass_right
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
TensorProduct.tmul
TensorProduct.map
RingHom.id
Semiring.toNonAssocSemiring
β€”TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
Algebra.TensorProduct.sMulCommClass_right
ext
IsScalarTower.to_smulCommClass
mulRight_tmul πŸ“–mathematicalβ€”mulRight
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
CommSemiring.toSemiring
Algebra.TensorProduct.instNonUnitalNonAssocSemiring
TensorProduct.instModule
Algebra.TensorProduct.isScalarTower_right
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
TensorProduct.tmul
TensorProduct.map
RingHom.id
Semiring.toNonAssocSemiring
β€”TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
Algebra.TensorProduct.isScalarTower_right
ext
IsScalarTower.to_smulCommClass
range_liftBaseChange πŸ“–mathematicalβ€”range
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
RingHom.id
RingHomSurjective.ids
liftBaseChange
Submodule.span
SetLike.coe
Submodule
Submodule.setLike
β€”le_antisymm
Algebra.to_smulCommClass
RingHomSurjective.ids
TensorProduct.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
liftBaseChange_tmul
Submodule.smul_mem
Submodule.subset_span
map_add
SemilinearMapClass.toAddHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.span_le
one_smul

SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
tmul πŸ“–mathematicalSemiconjBy
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.TensorProduct.instMul
TensorProduct.tmul
β€”eq

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
map_range_rTensor_subtype_lid πŸ“–mathematicalβ€”map
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.lid
LinearMap.range
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
LinearMap.rTensor
subtype
instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Top.top
instTop
β€”RingHomSurjective.ids
RingHomInvPair.ids
IsScalarTower.left
map_top
RingHomCompTriple.ids
map_comp
le_antisymm
TensorProduct.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
map_add
SemilinearMapClass.toAddHomClass
AddSubmonoidClass.toAddMemClass
smul_induction_on

TensorProduct

Definitions

NameCategoryTheorems
instStarMul πŸ“–CompOpβ€”
instStarRing πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
flip_mk_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
LinearMap
RingHom.id
addCommMonoid
instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_left
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
LinearMap.flip
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”SMulCommClass.symm
smulCommClass_left
smulCommClass_self
RingHomSurjective.ids
LinearMap.range_eq_top
top_le_iff
span_tmul_eq_top
Submodule.span_le
Algebra.algebraMap_eq_smul_one
smul_tmul
CompatibleSMul.isScalarTower
IsScalarTower.left
mk_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap
RingHom.id
addCommMonoid
instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”smulCommClass_left
smulCommClass_self
RingHomSurjective.ids
LinearMap.range_eq_top
top_le_iff
span_tmul_eq_top
Submodule.span_le
Algebra.algebraMap_eq_smul_one
smul_tmul
CompatibleSMul.isScalarTower
IsScalarTower.left

TensorProduct.Algebra

Definitions

NameCategoryTheorems
moduleAux πŸ“–CompOp
1 mathmath: moduleAux_apply

Theorems

NameKindAssumesProvesValidatesDepends On
linearMap_comp_mul' πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Algebra.toModule
TensorProduct.addCommMonoid
Algebra.TensorProduct.instSemiring
TensorProduct.instModule
Algebra.TensorProduct.instAlgebra
RingHom.id
RingHomCompTriple.ids
Algebra.linearMap
LinearMap.mul'
Algebra.to_smulCommClass
Algebra.id
IsScalarTower.right
TensorProduct.map
β€”TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.right
TensorProduct.isScalarTower
IsScalarTower.left
RingHomCompTriple.ids
Algebra.to_smulCommClass
LinearMap.ext_ring
IsScalarTower.to_smulCommClass
mul_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
moduleAux_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
LinearMap.addCommMonoid
TensorProduct.instModule
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
moduleAux
TensorProduct.tmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”smulCommClass_self
mul'_comp_tensorTensorTensorComm πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
TensorProduct.addCommMonoid
TensorProduct.instModule
Algebra.TensorProduct.instNonUnitalNonAssocSemiring
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.mul'
Algebra.TensorProduct.sMulCommClass_right
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.TensorProduct.isScalarTower_right
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.tensorTensorTensorComm
TensorProduct.map
β€”TensorProduct.AlgebraTensorModule.curry_injective
TensorProduct.isScalarTower
IsScalarTower.left
RingHomCompTriple.ids
Algebra.TensorProduct.sMulCommClass_right
Algebra.TensorProduct.isScalarTower_right
RingHomInvPair.ids
TensorProduct.smulCommClass_left
smulCommClass_self
IsScalarTower.to_smulCommClass
LinearMap.instIsScalarTower
LinearMap.ext
smul_def πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
Module.toDistribMulAction
module
TensorProduct.tmul
β€”β€”

---

← Back to Index