| Name | Category | Theorems |
algEquivOfLinearEquivTensorProduct 📖 | CompOp | 1 mathmath: algEquivOfLinearEquivTensorProduct_apply
|
algEquivOfLinearEquivTripleTensorProduct 📖 | CompOp | 1 mathmath: algEquivOfLinearEquivTripleTensorProduct_apply
|
algHomOfLinearMapTensorProduct 📖 | CompOp | 1 mathmath: algHomOfLinearMapTensorProduct_apply
|
assoc 📖 | CompOp | 8 mathmath: AlgCat.hom_inv_associator, assoc_tmul, AlgCat.hom_hom_associator, assoc_toLinearEquiv, assoc_symm_tmul, CommAlgCat.associator_inv_hom, CommAlgCat.associator_hom_hom, Bialgebra.TensorProduct.assoc_toAlgEquiv
|
cancelBaseChange 📖 | CompOp | 2 mathmath: cancelBaseChange_tmul, cancelBaseChange_symm_tmul
|
comm 📖 | CompOp | 13 mathmath: Subalgebra.mulMap_comm, CommAlgCat.braiding_hom_hom, comm_comp_map_apply, Subalgebra.comm_trans_rTensorBot, comm_comp_includeRight, comm_comp_includeLeft, CommAlgCat.braiding_inv_hom, comm_symm_tmul, comm_tmul, Subalgebra.comm_trans_lTensorBot, comm_comp_map, comm_toLinearEquiv, comm_symm
|
commRight 📖 | CompOp | 2 mathmath: commRight_tmul, Algebra.TensorProduct.commRight_symm_tmul
|
equivOfCompatibleSMul 📖 | CompOp | — |
lTensor 📖 | CompOp | — |
leftComm 📖 | CompOp | 3 mathmath: leftComm_tmul, leftComm_toLinearEquiv, leftComm_symm_tmul
|
lid 📖 | CompOp | 7 mathmath: lid_tmul, AlgCat.hom_inv_leftUnitor, AlgCat.hom_hom_leftUnitor, Bialgebra.TensorProduct.lid_toAlgEquiv, lmul''_eq_lid_comp_mapOfCompatibleSMul, lid_toLinearEquiv, lid_symm_apply
|
lidOfCompatibleSMul 📖 | CompOp | 2 mathmath: lmulEquiv_eq_lidOfCompatibleSMul, lidOfCompatibleSMul_tmul
|
liftEquiv 📖 | CompOp | 2 mathmath: liftEquiv_apply, liftEquiv_symm_apply_coe
|
lmul' 📖 | CompOp | 13 mathmath: Algebra.FormallyUnramified.lmul_elem, AlgebraicGeometry.diagonal_SpecMap, Algebra.FormallyUnramified.isOpenImmersion_SpecMap_lmul, KaehlerDifferential.End_equiv_aux, lmul'_apply_tmul, lmul'_comp_map, productMap_eq_comp_map, lmul'_comp_includeRight, Derivation.tensorProductTo_mul, lmul'_comp_includeLeft, AlgebraicGeometry.diagonal_Spec_map, lmul'_toLinearMap, Algebra.FormallyUnramified.iff_exists_tensorProduct
|
lmul'' 📖 | CompOp | 1 mathmath: lmul''_eq_lid_comp_mapOfCompatibleSMul
|
lmulEquiv 📖 | CompOp | 1 mathmath: lmulEquiv_eq_lidOfCompatibleSMul
|
map 📖 | CompOp | 54 mathmath: CommRingCat.tensorProd_map_right, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right, Bialgebra.TensorProduct.map_toAlgHom, congr_symm_apply, map_comp, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, Bialgebra.TensorProduct.counitAlgHom_def, comm_comp_map_apply, Subalgebra.mulMap_map_comp_eq, map_tmul, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, CliffordAlgebra.toBaseChange_comp_involute, Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, Bialgebra.TensorProduct.comulAlgHom_def, map_ker, AlgHom.coe_tensorEqualizer, RingHom.SurjectiveOnStalks.tensorProductMap, Algebra.FiniteType.baseChangeAux_surj, lmul'_comp_map, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, map_id, congr_apply, productMap_eq_comp_map, map_comp_id, CommAlgCat.tensorHom_hom, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left, AlgCat.hom_whiskerLeft, map_surjective, AlgHom.tensorEqualizerEquiv_apply, CommAlgCat.whiskerLeft_hom, CommAlgCat.whiskerRight_hom, CliffordAlgebra.toBaseChange_comp_reverseOp, map_range, map_comp_includeRight, algEquivIncludeRange_toAlgHom, BialgHomClass.map_comp_comulAlgHom, RingHom.Finite.tensorProductMap, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, lTensor_ker, PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable, comm_comp_map, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, map_restrictScalars_comp_includeRight, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, AlgCat.hom_tensorHom, toLinearMap_map, map_id_comp, AlgCat.hom_whiskerRight, map_bijective, Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, rTensor_ker, map_comp_includeLeft, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct
|
mapOfCompatibleSMul 📖 | CompOp | 2 mathmath: mapOfCompatibleSMul_surjective, mapOfCompatibleSMul_tmul
|
mapOfCompatibleSMul' 📖 | CompOp | 1 mathmath: lmul''_eq_lid_comp_mapOfCompatibleSMul
|
productLeftAlgHom 📖 | CompOp | — |
productMap 📖 | CompOp | 7 mathmath: productMap_left_apply, productMap_left, productMap_apply_tmul, productMap_range, productMap_eq_comp_map, productMap_right_apply, productMap_right
|
rTensor 📖 | CompOp | — |
rid 📖 | CompOp | 9 mathmath: AlgCat.hom_inv_rightUnitor, Bialgebra.TensorProduct.counitAlgHom_def, Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap, AlgCat.hom_hom_rightUnitor, Bialgebra.TensorProduct.rid_toAlgEquiv, rid_tmul, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, rid_toLinearEquiv, rid_symm_apply
|
tensorTensorTensorComm 📖 | CompOp | 7 mathmath: tensorTensorTensorComm_symm, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, tensorTensorTensorComm_symm_tmul, Bialgebra.TensorProduct.comulAlgHom_def, toLinearEquiv_tensorTensorTensorComm, tensorTensorTensorComm_toLinearEquiv, tensorTensorTensorComm_tmul
|