Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/UniqueFactorizationDomain/Basic.lean

Statistics

MetricCount
Definitions0
Theoremscard_factors_eq, prod_le_prod_iff_le, ufm, unique', uniqueFactorizationMonoid, uniqueFactorizationMonoid_iff, dvd_of_dvd_mul_left_of_no_prime_factors, dvd_of_dvd_mul_right_of_no_prime_factors, exists_mem_factors, exists_mem_factors_of_dvd, exists_reduced_factors, exists_reduced_factors', factors_eq_singleton_of_irreducible, factors_eq_zero, factors_mul, factors_of_isUnit, factors_one, factors_pos, factors_pow, factors_pow_count_prod, factors_rel_of_associated, factors_unique, iff_exists_prime_factors, isRelPrime_iff_no_prime_factors, of_existsUnique_irreducible_factors, of_exists_prime_factors, iff_wellFounded_associates, of_exists_prime_factors, of_wellFoundedLT_associates, of_wfDvdMonoid_associates, wellFoundedLT_associates, wfDvdMonoid_associates, irreducible_iff_prime_of_existsUnique_irreducible_factors, irreducible_iff_prime_of_exists_prime_factors, prime_factors_irreducible, prime_factors_unique
36
Total36

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
card_factors_eq πŸ“–mathematicalAssociated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.card
UniqueFactorizationMonoid.factors
β€”UniqueFactorizationMonoid.factors.congr_simp
UniqueFactorizationMonoid.factors_zero
ne_zero_iff
Multiset.card_eq_card_of_rel
UniqueFactorizationMonoid.factors_unique
UniqueFactorizationMonoid.irreducible_of_factor
trans
UniqueFactorizationMonoid.factors_prod
symm

Associates

Theorems

NameKindAssumesProvesValidatesDepends On
prod_le_prod_iff_le πŸ“–mathematicalIrreducible
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
Preorder.toLE
instPreorder
CommMonoidWithZero.toCommMonoid
Multiset.prod
instCommMonoid
Multiset
PartialOrder.toPreorder
Multiset.instPartialOrder
β€”Multiset.le_iff_exists_add
ufm
unique'
Multiset.mem_add
UniqueFactorizationMonoid.irreducible_of_factor
Multiset.prod_add
associated_iff_eq
Unique.instSubsingleton
Associated.symm
UniqueFactorizationMonoid.factors_prod
not_irreducible_zero
Multiset.prod_eq_zero_iff
instNoZeroDivisors
UniqueFactorizationMonoid.toIsCancelMulZero
instNontrivial
MulZeroClass.mul_zero
prod_le_prod
ufm πŸ“–mathematicalβ€”UniqueFactorizationMonoid
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
β€”WfDvdMonoid.wfDvdMonoid_associates
UniqueFactorizationMonoid.toIsWellFounded
instIsCancelMulZero
UniqueFactorizationMonoid.toIsCancelMulZero
irreducible_iff_prime_iff
UniqueFactorizationMonoid.irreducible_iff_prime
unique' πŸ“–β€”Irreducible
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
Multiset.prod
instCommMonoid
CommMonoidWithZero.toCommMonoid
β€”β€”Multiset.induction_on_multiset_quot
Multiset.map_mk_eq_map_mk_of_rel
UniqueFactorizationMonoid.factors_unique
Multiset.mem_map_of_mem
mk_eq_mk_iff_associated

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
uniqueFactorizationMonoid πŸ“–mathematicalβ€”UniqueFactorizationMonoidβ€”isCancelMulZero_iff
UniqueFactorizationMonoid.toIsCancelMulZero
UniqueFactorizationMonoid.iff_exists_prime_factors
apply_symm_apply
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MulEquivClass.toMonoidWithZeroHomClass
instMulEquivClass
Multiset.mem_map
prime_iff
Multiset.prod_hom
MonoidWithZeroHomClass.toMonoidHomClass
MulEquivClass.instMonoidHomClass
toMonoidHom_eq_coe
Units.coe_map
MonoidHom.coe_coe
map_mul
MonoidHomClass.toMulHomClass
uniqueFactorizationMonoid_iff πŸ“–mathematicalβ€”UniqueFactorizationMonoidβ€”uniqueFactorizationMonoid

UniqueFactorizationMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_dvd_mul_left_of_no_prime_factors πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”IsRelPrime.dvd_of_dvd_mul_right
instDecompositionMonoid
isRelPrime_iff_no_prime_factors
dvd_of_dvd_mul_right_of_no_prime_factors πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”mul_comm
dvd_of_dvd_mul_left_of_no_prime_factors
exists_mem_factors πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset
Multiset.instMembership
factors
β€”WfDvdMonoid.exists_irreducible_factor
toIsWellFounded
exists_mem_factors_of_dvd
exists_mem_factors_of_dvd πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Multiset
Multiset.instMembership
factors
Associated
β€”MulZeroClass.mul_zero
factors_unique
Multiset.mem_cons
irreducible_of_factor
Associated.symm
Associated.instIsTrans
factors_prod
Multiset.prod_cons
Associated.mul_left
Multiset.exists_mem_of_rel_of_mem
exists_reduced_factors πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”induction_on_prime
isUnit_of_dvd_unit
one_mul
mul_assoc
Prime.left_dvd_or_dvd_right_of_dvd_mul
toIsCancelMulZero
dvd_mul_of_dvd_right
Dvd.dvd.trans
mul_left_comm
exists_reduced_factors' πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”exists_reduced_factors
factors_eq_singleton_of_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Associated
factors
Multiset
Multiset.instSingleton
β€”exists_mem_factors_of_dvd
Irreducible.ne_zero
dvd_rfl
Multiset.eq_of_le_of_card_le
Multiset.singleton_le
card_factors_of_irreducible
Multiset.card_singleton
le_refl
factors_eq_zero πŸ“–mathematicalβ€”factors
Multiset
Multiset.instZero
IsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
exists_mem_factors
factors_of_isUnit
factors_mul πŸ“–mathematicalβ€”Multiset.Rel
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
factors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Multiset
Multiset.instAdd
β€”factors_unique
irreducible_of_factor
Multiset.mem_add
Associated.trans
factors_prod
mul_ne_zero
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
toIsCancelMulZero
Multiset.prod_add
Associated.symm
Associated.mul_mul
factors_of_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
factors
Multiset
Multiset.instZero
β€”factors_one
factors_rel_of_associated
associated_one_iff_isUnit
factors_one πŸ“–mathematicalβ€”factors
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Multiset
Multiset.instZero
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
exists_prime_factors
Multiset.rel_zero_right
factors_unique
irreducible_of_factor
Multiset.notMem_zero
Multiset.prod_zero
factors_prod
one_ne_zero
NeZero.one
factors_pos πŸ“–mathematicalβ€”Multiset
Preorder.toLT
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.instZero
factors
IsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”bot_lt_iff_ne_bot
not_iff_not
factors_eq_zero
factors_pow πŸ“–mathematicalβ€”Multiset.Rel
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
factors
Monoid.toNatPow
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
β€”zero_nsmul
pow_zero
factors_one
Multiset.rel_zero_right
factors.congr_simp
zero_pow
factors_zero
nsmul_zero
pow_succ'
succ_nsmul'
Multiset.Rel.trans
Associated.instIsTrans
factors_mul
pow_ne_zero
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
toIsCancelMulZero
Multiset.Rel.add
Multiset.rel_refl_of_refl_on
Associated.refl
factors_pow_count_prod πŸ“–mathematicalβ€”Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Finset.prod
CommMonoidWithZero.toCommMonoid
Multiset.toFinset
factors
Monoid.toNatPow
Multiset.count
β€”Multiset.prod_sum
Finset.prod_congr
Multiset.prod_nsmul
Multiset.prod_singleton
Multiset.toFinset_sum_count_nsmul_eq
factors_prod
factors_rel_of_associated πŸ“–mathematicalAssociated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.Rel
factors
β€”iff_iff_and_or_not_and_not
Associated.eq_zero_iff
factors_zero
factors_unique
irreducible_of_factor
Associated.trans
factors_prod
Associated.symm
factors_unique πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Associated
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset.Relβ€”prime_factors_unique
toIsCancelMulZero
irreducible_iff_prime
iff_exists_prime_factors πŸ“–mathematicalβ€”UniqueFactorizationMonoid
Prime
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
β€”exists_prime_factors
of_exists_prime_factors
isRelPrime_iff_no_prime_factors πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Prime
β€”Prime.not_unit
WfDvdMonoid.isRelPrime_of_no_irreducible_factors
toIsWellFounded
irreducible_iff_prime
of_existsUnique_irreducible_factors πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Associated
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset.Rel
UniqueFactorizationMonoidβ€”of_exists_prime_factors
irreducible_iff_prime_of_existsUnique_irreducible_factors
of_exists_prime_factors πŸ“–mathematicalPrime
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
UniqueFactorizationMonoidβ€”WfDvdMonoid.of_exists_prime_factors
irreducible_iff_prime_of_exists_prime_factors

WfDvdMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
iff_wellFounded_associates πŸ“–mathematicalβ€”WfDvdMonoid
WellFoundedLT
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Preorder.toLT
Associates.instPreorder
CommMonoidWithZero.toCommMonoid
β€”wellFoundedLT_associates
of_wellFoundedLT_associates
of_exists_prime_factors πŸ“–mathematicalPrime
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
WfDvdMonoidβ€”RelHomClass.wellFounded
RelHom.instRelHomClass
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
MulZeroClass.mul_zero
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
Multiset.card_pos
associated_one_iff_isUnit
Multiset.prod_zero
Associated.symm
Multiset.card_add
Multiset.card_eq_card_of_rel
prime_factors_unique
Multiset.mem_add
Multiset.prod_add
Associated.instIsTrans
Associated.mul_mul
wellFounded_lt
of_wellFoundedLT_associates πŸ“–mathematicalβ€”WfDvdMonoidβ€”of_wfDvdMonoid_associates
Associates.dvdNotUnit_iff_lt
IsWellFounded.wf
of_wfDvdMonoid_associates πŸ“–mathematicalβ€”WfDvdMonoidβ€”Function.Surjective.wellFounded_iff
Associates.mk_surjective
Associates.mk_dvdNotUnit_mk_iff
wellFounded_dvdNotUnit
wellFoundedLT_associates πŸ“–mathematicalβ€”WellFoundedLT
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Preorder.toLT
Associates.instPreorder
CommMonoidWithZero.toCommMonoid
β€”Associates.dvdNotUnit_of_lt
wellFounded_dvdNotUnit
wfDvdMonoid_associates
wfDvdMonoid_associates πŸ“–mathematicalβ€”WfDvdMonoid
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Associates.instCommMonoidWithZero
β€”Function.Surjective.wellFounded_iff
Associates.mk_surjective
Associates.mk_dvdNotUnit_mk_iff
wellFounded_dvdNotUnit

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_iff_prime_of_existsUnique_irreducible_factors πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Associated
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset.Rel
Primeβ€”Irreducible.ne_zero
Irreducible.not_isUnit
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
MulZeroClass.mul_zero
left_ne_zero_of_mul
right_ne_zero_of_mul
Multiset.mem_cons
Multiset.mem_add
Associated.instIsTrans
Multiset.prod_cons
Associated.mul_left
Associated.mul_mul
Associated.symm
Multiset.prod_add
Multiset.exists_mem_of_rel_of_mem
Multiset.mem_cons_self
Associated.dvd_iff_dvd_left
Associated.dvd_iff_dvd_right
Multiset.dvd_prod
Prime.irreducible
irreducible_iff_prime_of_exists_prime_factors πŸ“–mathematicalPrime
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
Irreducibleβ€”prime_factors_irreducible
Associated.prime_iff
Multiset.mem_singleton_self
Prime.irreducible
prime_factors_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Prime
Associated
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset
Multiset.instSingleton
β€”Multiset.induction_on
Irreducible.not_isUnit
associated_one_iff_isUnit
Associated.symm
Multiset.exists_mem_of_ne_zero
Irreducible.isUnit_or_isUnit
mul_right_comm
mul_assoc
Multiset.prod_cons
Multiset.cons_erase
mul_comm
isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid
Multiset.mem_cons_self
mul_one
prime_factors_unique πŸ“–mathematicalPrime
Associated
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset.Relβ€”Multiset.induction_on
Multiset.rel_zero_left
Multiset.eq_zero_of_forall_notMem
Associated.symm
Prime.not_unit
isUnit_iff_dvd_one
Dvd.dvd.trans
Multiset.dvd_prod
exists_associated_mem_of_dvd_prod
Associated.dvd_iff_dvd_right
Multiset.prod_cons
Multiset.cons_erase
Multiset.mem_of_mem_erase
Associated.of_mul_left
Prime.ne_zero

---

← Back to Index