Documentation Verification Report

ClassGroup

📁 Source: Mathlib/RingTheory/UniqueFactorizationDomain/ClassGroup.lean

Statistics

MetricCount
DefinitionsClassGroup
1
TheoremsisPrincipal_of_exists_mul_ne_zero_isPrincipal, subsingleton_classGroup
2
Total3

NormalizedGCDMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
isPrincipal_of_exists_mul_ne_zero_isPrincipal 📖Submodule.IsPrincipal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal
Submodule.mul
IsScalarTower.right
Algebra.id
IsScalarTower.right
Submodule.IsPrincipal.principal
Submodule.mem_span_mul_finite_of_mem_mul
Ideal.span_eq
IsScalarTower.left
Ideal.span_mul_span
Ideal.instIsTwoSided_1
Ideal.span_mono
Set.mul_subset_mul_right
Ideal.span_le
Ideal.mem_span_singleton
Finset.gcd_dvd
Ideal.mul_mono_right
le_antisymm
Ideal.mul_le
mul_assoc
dvd_mul_of_dvd_left
Finset.gcd_mul_left
Finset.dvd_gcd_iff
Ideal.span.eq_1
Ideal.mul_mem_mul
Dvd.dvd.trans
Associated.dvd'
Associated.mul_right
associated_normalize
Ideal.span_singleton_le_iff_mem
Ideal.mem_mul_span_singleton
Mathlib.Tactic.Contrapose.contrapose₄
MulZeroClass.mul_zero
Ideal.span_singleton_mul_span_singleton
subsingleton_classGroup 📖mathematicalClassGroupClassGroup.induction
Localization.isLocalization
ClassGroup.mk_eq_one_iff

(root)

Definitions

NameCategoryTheorems
ClassGroup 📖CompOp
32 mathmath: ClassGroup.mk0_integralRep, ClassGroup.mk0_eq_mk0_iff, ClassGroup.mk_eq_mk_of_coe_ideal, ClassGroup.Quot_mk_eq_mk, WeierstrassCurve.Affine.Point.toClass_zero, ClassGroup.mk0_eq_one_iff, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, ClassGroup.mkMMem_surjective, card_classGroup_eq_one_iff, ClassGroup.mk_mk0, ClassGroup.mk0_eq_mk0_iff_exists_fraction_ring, ClassGroup.mk_eq_one_iff, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', ClassGroup.mk_eq_mk, ClassGroup.equivPic_symm_apply, WeierstrassCurve.Affine.Point.toClass_some, NormalizedGCDMonoid.subsingleton_classGroup, NumberField.exists_ideal_in_class_of_norm_le, WeierstrassCurve.Affine.Point.toClass_injective, ClassGroup.exists_mk0_eq_mk0, ClassGroup.mk0_surjective, ClassGroup.mk_eq_one_of_coe_ideal, WeierstrassCurve.Affine.Point.toClass_eq_zero, ClassGroup.equiv_mk0, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, ClassGroup.mk0_eq_mk0_inv_iff, ClassGroup.mk_canonicalEquiv, ClassGroup.equivPic_apply, card_classGroup_eq_one, ClassGroup.mk_def, WeierstrassCurve.Affine.Point.toClass_apply, ClassGroup.equiv_mk

---

← Back to Index