Documentation Verification Report

Ideal

📁 Source: Mathlib/RingTheory/UniqueFactorizationDomain/Ideal.lean

Statistics

MetricCount
Definitions0
Theoremsexists_mem_prime_of_ne_bot, setOf_isPrincipal_wellFoundedOn_gt, of_setOf_isPrincipal_wellFoundedOn_gt
3
Total3

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
setOf_isPrincipal_wellFoundedOn_gt 📖mathematicalSet.WellFoundedOn
Ideal
CommSemiring.toSemiring
setOf
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Set.ext
Set.image_univ
Set.wellFoundedOn_image
Set.wellFoundedOn_univ
span_singleton_lt_span_singleton
wellFounded_dvdNotUnit

Ideal.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_prime_of_ne_bot 📖mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prime
CommSemiring.toCommMonoidWithZero
Submodule.exists_mem_ne_zero_of_ne_bot
UniqueFactorizationMonoid.factors_prod
Ideal.mul_unit_mem_iff_mem
Units.isUnit
multiset_prod_mem_iff_exists_mem
UniqueFactorizationMonoid.prime_of_factor

WfDvdMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
of_setOf_isPrincipal_wellFoundedOn_gt 📖mathematicalSet.WellFoundedOn
Ideal
CommSemiring.toSemiring
setOf
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
WfDvdMonoid
CommSemiring.toCommMonoidWithZero
Ideal.span_singleton_lt_span_singleton

---

← Back to Index