Documentation Verification Report

LocalStructure

πŸ“ Source: Mathlib/RingTheory/Unramified/LocalStructure.lean

Statistics

MetricCount
DefinitionsHasStandardEtaleSurjectionOn
1
Theoremsexists_isStandardEtale, exists_isStandardEtale_mvPolynomial, exists_hasStandardEtaleSurjectionOn, exists_notMem_forall_ne_mem_and_adjoin_eq_top, exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, instQuasiFiniteOfEssFiniteTypeOfFormallyUnramified, isStandardEtale, mk, of_dvd
9
Total10

Algebra.IsEtaleAt

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isStandardEtale πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.IsStandardEtale
Localization.Away
CommRing.toCommMonoid
OreLocalization.instCommRing
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
OreLocalization.instAlgebra
Ring.toSemiring
CommRing.toRing
β€”Algebra.exists_etale_of_isEtaleAt
Algebra.IsUnramifiedAt.exists_hasStandardEtaleSurjectionOn
Algebra.FiniteType.of_finitePresentation
Algebra.FormallyEtale.instFormallyUnramified
Algebra.basicOpen_subset_etaleLocus_iff_etale
HasSubset.Subset.trans
Set.instIsTransSubset
PrimeSpectrum.basicOpen_mul_le_left
Ideal.IsPrime.mul_notMem
HasStandardEtaleSurjectionOn.isStandardEtale
HasStandardEtaleSurjectionOn.of_dvd

Algebra.IsSmoothAt

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isStandardEtale_mvPolynomial πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsScalarTower
MvPolynomial
Localization.Away
CommRing.toCommMonoid
Algebra.toSMul
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
OreLocalization.instSemiring
Ring.toSemiring
CommRing.toRing
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
OreLocalization.instSMulOfIsScalarTower
Monoid.toMulAction
IsScalarTower.right
Algebra.IsStandardEtale
MvPolynomial.instCommRingMvPolynomial
OreLocalization.instCommRing
β€”IsScalarTower.right
exists_notMem_isStandardSmooth
RingHom.IsStandardSmooth.exists_etale_mvPolynomial
IsScalarTower.of_algebraMap_eq'
IsLocalization.isPrime_of_isPrime_disjoint
Localization.isLocalization
Ideal.disjoint_powers_iff_notMem
Ideal.IsPrime.isRadical
Algebra.IsEtaleAt.exists_isStandardEtale
Algebra.Etale.finitePresentation
RingHom.Etale.toAlgebra
Algebra.FormallyEtale.instLocalization
Algebra.Etale.formallyEtale
IsLocalization.exists_mk'_eq
Ideal.instIsTwoSided_1
Ideal.IsPrime.mem_of_pow_mem
IsLocalization.Away.of_associated
IsLocalization.Away.algebraMap_pow_isUnit
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsUnit.unit.congr_simp
mul_comm
IsLocalization.Away.mul'
OreLocalization.instIsScalarTower
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap_of_tower
AlgEquiv.map_mul'
AlgEquiv.map_add'
Ideal.IsPrime.mul_notMem
Algebra.IsStandardEtale.of_equiv

Algebra.IsUnramifiedAt

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hasStandardEtaleSurjectionOn πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HasStandardEtaleSurjectionOn
β€”Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
Algebra.ZariskisMainProperty.of_finiteType
Algebra.QuasiFinite.instLocalization
instQuasiFiniteOfEssFiniteTypeOfFormallyUnramified
Algebra.EssFiniteType.of_finiteType
Algebra.Unramified.formallyUnramified
Submodule.fg_top
Algebra.FormallyUnramified.of_equiv
Algebra.FormallyUnramified.instLocalization
Ideal.IsPrime.under
Algebra.basicOpen_subset_unramifiedLocus_iff
Localization.awayMap_bijective_of_dvd
dvd_mul_right
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
HasStandardEtaleSurjectionOn.of_dvd
Ideal.IsPrime.mul_notMem
Algebra.instIsStandardEtaleRing
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
AlgEquiv.surjective
Algebra.exists_formallyUnramified_of_isUnramifiedAt
IsLocalization.isPrime_of_isPrime_disjoint
Ideal.IsPrime.mem_of_pow_mem
instFiniteTypeAway
IsLocalization.exists_mk'_eq
Ideal.instIsTwoSided_1
IsLocalization.mk'_spec
IsLocalization.Away.instHMulAwayCoeRingHomAlgebraMap_1
exists_notMem_forall_ne_mem_and_adjoin_eq_top πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.adjoin
Ideal.ResidueField
Ideal.under
Ideal.IsPrime.under
Semifield.toCommSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IsLocalRing.ResidueField.instAlgebra
Localization.AtPrime.instAlgebraOfLiesOver
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Set
Set.instSingletonSet
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Ideal.IsPrime.under
IsArtinianRing.of_finite
Algebra.to_smulCommClass
IsScalarTower.right
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Algebra.instFiniteResidueFieldOfFormallyUnramified
Algebra.IsIntegral.isLocalHom
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
Module.FaithfullyFlat.faithfulSMul
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Localization.AtPrime.isLocalRing
Module.Free.self
Algebra.EssFiniteType.of_finiteType
Algebra.FiniteType.of_finitePresentation
Algebra.Etale.finitePresentation
Algebra.instEtaleOfIsStandardSmoothOfRelativeDimensionOfNatNat
Algebra.IsStandardSmoothOfRelativeDimension.id
Algebra.FormallyUnramified.inst
Algebra.QuasiFinite.finite_fiber
Algebra.QuasiFinite.instOfFinite
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Field.exists_primitive_element
Algebra.instFiniteResidueFieldOfQuasiFiniteAt
Algebra.QuasiFinite.instLocalization
Algebra.instIsSeparableResidueFieldOfIsUnramifiedAt
Module.Finite.finiteType
NeZero.one
Field.instIsLocalRing
Algebra.adjoin_singleton_one
Algebra.adjoin_singleton_zero
IntermediateField.adjoin_eq_top_iff
instIsAlgebraicResidueFieldOfIsIntegral
Algebra.IsIntegral.of_finite
IsScalarTower.to_smulCommClass
IsLocalRing.ResidueField.instIsScalarTower
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instIsScalarTower
Commute.all
Ideal.Fiber.lift_residueField_surjective
IsArtinianRing.exists_not_mem_forall_mem_of_ne
PrimeSpectrum.isPrime
Ideal.Fiber.exists_smul_eq_one_tmul
IsScalarTower.algebraMap_apply
IsDomain.to_noZeroDivisors
instIsDomain
IsIdempotentElem.one_sub_mul_self
IsIdempotentElem.map
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Algebra.smul_def
map_mul
AlgHom.map_algebraMap
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
one_mul
Ideal.algebraMap_residueField_eq_zero
Ideal.over_def
PrimeSpectrum.ext_iff
EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
MulZeroClass.zero_mul
MulZeroClass.mul_zero
Ideal.instIsTwoSided_1
map_invβ‚€
eq_inv_mul_iff_mul_eqβ‚€
top_le_iff
Algebra.adjoin_singleton_le
Subalgebra.smul_mem
Algebra.self_mem_adjoin_singleton
exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective πŸ“–mathematicalβ€”Ideal.primesOver
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Polynomial.instCommSemiringAdjoinSingleton
Ideal.under
Algebra.ofSubsemiring
Algebra.id
Subalgebra.instSubsemiringClass
Ideal
Function.Bijective
Ideal.ResidueField
Polynomial.instCommRingAdjoinSingleton
CommRing.toRing
Ideal.IsPrime.under
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Semifield.toCommSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
IsLocalRing.ResidueField.instAlgebra
Localization.AtPrime.instAlgebraOfLiesOver
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
β€”Ideal.IsPrime.under
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Subalgebra.instSubsemiringClass
exists_notMem_forall_ne_mem_and_adjoin_eq_top
Set.ext
Ideal.LiesOver.trans
IsScalarTower.subalgebra'
IsScalarTower.right
Ideal.under_liesOver_of_liesOver
SetLike.le_def
instIsConcreteLE
Eq.ge
Ideal.over_def
Algebra.self_mem_adjoin_singleton
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsLocalRing.ResidueField.instIsScalarTower_1
Localization.AtPrime.instIsScalarTower_1
AlgHom.range_eq_top
top_le_iff
Algebra.adjoin_singleton_le
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
IsScalarTower.coe_toAlgHom
IsScalarTower.algebraMap_apply
IsLocalRing.ResidueField.instIsScalarTower
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
instQuasiFiniteOfEssFiniteTypeOfFormallyUnramified πŸ“–mathematicalβ€”Algebra.QuasiFiniteβ€”Algebra.FormallyUnramified.finite_of_free
Algebra.to_smulCommClass
Algebra.FormallyUnramified.base_change
Algebra.EssFiniteType.baseChange
Module.Free.of_divisionRing

HasStandardEtaleSurjectionOn

Theorems

NameKindAssumesProvesValidatesDepends On
isStandardEtale πŸ“–mathematicalHasStandardEtaleSurjectionOnAlgebra.IsStandardEtale
Localization.Away
CommRing.toCommMonoid
OreLocalization.instCommRing
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
OreLocalization.instAlgebra
Ring.toSemiring
CommRing.toRing
CommRing.toCommSemiring
β€”Algebra.IsStandardEtale.of_surjective
Algebra.instIsStandardEtaleRing
mk πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
HasStandardEtaleSurjectionOnβ€”Algebra.IsStandardEtale.nonempty_standardEtalePresentation
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
of_dvd πŸ“–β€”HasStandardEtaleSurjectionOn
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”β€”IsLocalization.Away.mul'
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
Algebra.IsStandardEtale.of_isLocalizationAway
Algebra.instIsStandardEtaleRing
IsLocalization.Away.mapₐ_surjective_of_surjective

(root)

Definitions

NameCategoryTheorems
HasStandardEtaleSurjectionOn πŸ“–MathDef
2 mathmath: Algebra.IsUnramifiedAt.exists_hasStandardEtaleSurjectionOn, HasStandardEtaleSurjectionOn.mk

---

← Back to Index