📁 Source: Mathlib/RingTheory/Unramified/Pi.lean
instForall
pi_iff
Algebra.FormallyUnramified
Pi.commRing
Pi.algebra
CommRing.toCommSemiring
Ring.toSemiring
nonempty_fintype
of_surjective
Function.surjective_eval
Zero.instNonempty
Ideal.instIsTwoSided_1
iff_comp_injective
AlgHom.ext
Finset.univ_sum_single
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Finset.sum_congr
Ideal.Quotient.eq_zero_iff_mem
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_eq_zero
AlgHom.congr_fun
mul_one
Ideal.mem_bot
IsIdempotentElem.eq
IsIdempotentElem.mul
IsIdempotentElem.map
NonUnitalAlgSemiHomClass.toMulHomClass
IsIdempotentElem.one_sub
pow_two
Ideal.pow_mem_pow
mul_sub
Ideal.mul_mem_left
neg_mul
neg_sub
mul_comm
RingHomCompTriple.ids
RingHom.map_one
Ideal.mem_span_singleton
dvd_refl
Pi.single_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
comp_injective
IsScalarTower.right
Ideal.map_pow
Ideal.map_bot
Ideal.mem_map_of_mem
one_mul
MulZeroClass.zero_mul
sub_self
mul_assoc
---
← Back to Index