Documentation Verification Report

DiscreteValuativeRel

📁 Source: Mathlib/RingTheory/Valuation/DiscreteValuativeRel.lean

Statistics

MetricCount
Definitions0
Theoremsof_compatible_withZeroMulInt, nonempty_orderIso_withZeroMul_int_iff
2
Total2

ValuativeRel

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_orderIso_withZeroMul_int_iff 📖mathematicalOrderMonoidIso
ValueGroupWithZero
WithZero
Multiplicative
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderValueGroupWithZero
WithZero.instPreorder
Multiplicative.preorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instMulValueGroupWithZero
MulZeroClass.toMul
WithZero.instMulZeroClass
Multiplicative.mul
IsDiscrete
IsNontrivial
MulArchimedean
CommMonoidWithZero.toCommMonoid
instCommMonoidWithZeroValueGroupWithZero
map_inv₀
MulEquivClass.toMonoidWithZeroHomClass
OrderMonoidIso.instMulEquivClass
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
OrderMonoidIso.instOrderIsoClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
Int.instZeroLEOneClass
eq_or_ne
map_inv_le_iff
WithZero.log_le_log
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
WithZero.log_lt_log
NeZero.one
WithZero.instNontrivial
map_inv_lt_iff
LT.lt.ne
MulArchimedean.comap
WithZero.instMulArchimedean
Multiplicative.instMulArchimedean
instArchimedeanInt
OrderMonoidIso.strictMono
LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered
isNontrivial_iff_nontrivial_units
IsDiscrete.has_maximal_element
exists_between
LT.lt.not_ge

ValuativeRel.IsDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
of_compatible_withZeroMulInt 📖mathematicalValuativeRel.IsDiscreteMultiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
ValuativeRel.IsRankLeOne.of_compatible_mulArchimedean
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
WithZero.instMulArchimedean
Multiplicative.instMulArchimedean
instArchimedeanInt
Set.Nontrivial.not_subsingleton
MonoidWithZeroHom.range_nontrivial
WithZero.instNontrivial
WithZero.denselyOrdered_set_iff_subsingleton
StrictMono.denselyOrdered_range
ValuativeRel.ValueGroupWithZero.embed_strictMono
ValuativeRel.nonempty_orderIso_withZeroMul_int_iff
LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered
ValuativeRel.isNontrivial_iff_nontrivial_units
ValuativeRel.instMulArchimedeanValueGroupWithZeroOfIsRankLeOne
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Contrapose.contrapose₁
LT.lt.ne'
Units.val_le_val
Eq.le

---

← Back to Index