Documentation Verification Report

RankOne

πŸ“ Source: Mathlib/RingTheory/Valuation/RankOne.lean

Statistics

MetricCount
DefinitionsRankOne, hom, ofRankLeOneStruct, rankLeOneStruct, unit, instRankOneValueGroupWithZeroValuationOfIsNontrivialOfIsRankLeOne
6
Theoremshom_eq_zero_iff, instIsNontrivial, nontrivial, strictMono, strictMono', toIsNontrivial, unit_ne_one, zero_of_hom_zero, nonempty_rankOne_iff_mulArchimedean, of_compatible_mulArchimedean, isNontrivial_of_rankOne, isRankLeOne_iff_mulArchimedean, isRankLeOne_of_rankOne
13
Total19

Valuation

Definitions

NameCategoryTheorems
RankOne πŸ“–CompData
1 mathmath: nonempty_rankOne_iff_mulArchimedean

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_rankOne_iff_mulArchimedean πŸ“–mathematicalβ€”RankOne
MulArchimedean
CommMonoidWithZero.toCommMonoid
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
β€”MulArchimedean.comap
NNReal.instMulArchimedean
Archimedean.exists_orderAddMonoidHom_real_injective
Additive.isOrderedAddMonoid
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Additive.instArchimedean
Units.instMulArchimedean
OrderAddMonoidHom.instAddMonoidHomClass
StrictMono.comp
strictMono_id
Monotone.strictMono_of_injective
OrderAddMonoidHom.monotone'
Nat.instAtLeastTwoHAddOfNat
le_of_lt
Real.rpow_pos_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
ne_of_gt
Real.instZeroLEOneClass
Real.rpow_zero
Units.ext_iff
WithZero.log_mul
Real.rpow_add
WithZero.map'_strictMono
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
RCLike.charZero_rclike
WithZero.withZeroUnitsEquiv_strictMono
WithZero.withZeroUnitsEquiv_symm_strictMono

Valuation.RankOne

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: strictMono, Valued.coe_valuation_eq_rankOne_hom_comp_valuation, Valued.norm_def, strictMono', PadicComplex.rankOne_hom_eq, hom_eq_zero_iff
ofRankLeOneStruct πŸ“–CompOpβ€”
rankLeOneStruct πŸ“–CompOpβ€”
unit πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hom_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
NNReal
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidWithZeroHom.funLike
hom
instZeroNNReal
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”zero_of_hom_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
instIsNontrivial πŸ“–mathematicalβ€”Valuation.IsNontrivial
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
β€”nontrivial
nontrivial πŸ“–β€”β€”β€”β€”Valuation.IsNontrivial.exists_val_nontrivial
toIsNontrivial
strictMono πŸ“–mathematicalβ€”StrictMono
NNReal
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
instPartialOrderNNReal
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidWithZeroHom.funLike
hom
β€”strictMono'
strictMono' πŸ“–mathematicalβ€”StrictMono
NNReal
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
instPartialOrderNNReal
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidWithZeroHom.funLike
hom
β€”β€”
toIsNontrivial πŸ“–mathematicalβ€”Valuation.IsNontrivial
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
β€”β€”
unit_ne_one πŸ“–β€”β€”β€”β€”Units.val_one
nontrivial
zero_of_hom_zero πŸ“–mathematicalDFunLike.coe
MonoidWithZeroHom
NNReal
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidWithZeroHom.funLike
hom
instZeroNNReal
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”eq_of_le_of_not_lt
zero_le'
strictMono
LT.lt.false
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass

ValuativeRel

Theorems

NameKindAssumesProvesValidatesDepends On
isNontrivial_of_rankOne πŸ“–mathematicalβ€”IsNontrivialβ€”isNontrivial_iff_isNontrivial
instCompatibleValueGroupWithZeroValuation
Valuation.RankOne.toIsNontrivial
isRankLeOne_iff_mulArchimedean πŸ“–mathematicalβ€”IsRankLeOne
MulArchimedean
ValueGroupWithZero
CommMonoidWithZero.toCommMonoid
instCommMonoidWithZeroValueGroupWithZero
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderValueGroupWithZero
β€”MulArchimedean.comap
NNReal.instMulArchimedean
Valuation.nonempty_rankOne_iff_mulArchimedean
isNontrivial_iff_isNontrivial
instCompatibleValueGroupWithZeroValuation
isRankLeOne_of_rankOne
GroupWithZero.toNontrivial
GroupWithZero.noZeroDivisors
Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_or_ne
MonoidWithZeroHom.one_apply_zero
NNReal.instCanonicallyOrderedAdd
MonoidWithZeroHom.monoidWithZeroHomClass
LT.lt.ne'
LT.lt.trans'
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.one
isRankLeOne_of_rankOne πŸ“–mathematicalβ€”IsRankLeOneβ€”β€”

ValuativeRel.IsRankLeOne

Theorems

NameKindAssumesProvesValidatesDepends On
of_compatible_mulArchimedean πŸ“–mathematicalβ€”ValuativeRel.IsRankLeOneβ€”ValuativeRel.isRankLeOne_iff_mulArchimedean
MulArchimedean.comap
ValuativeRel.ValueGroupWithZero.embed_strictMono

(root)

Definitions

NameCategoryTheorems
instRankOneValueGroupWithZeroValuationOfIsNontrivialOfIsRankLeOne πŸ“–CompOpβ€”

---

← Back to Index