Documentation Verification Report

ValuationRing

πŸ“ Source: Mathlib/RingTheory/Valuation/ValuationRing.lean

Statistics

MetricCount
DefinitionsPreValuationRing, ValuationRing, ValueGroup, commGroupWithZero, equivInteger, instInhabitedValueGroup, instInvValueGroup, instLEValueGroup, instLinearOrderIdealOfDecidableLE, instMulValueGroup, instOneValueGroup, instZeroValueGroup, linearOrder, linearOrderedCommGroupWithZero, valuation
15
TheoremspreValuationRing, valuationRing, cond, cond', iff_dvd_total, iff_ideal_total, isFractionRing, coe_equivInteger_apply, cond, dvd_total, iff_dvd_total, iff_ideal_total, iff_isInteger_or_isInteger, iff_local_bezout_domain, instIsBezout, instIsFractionRingInteger, instNontrivialValueGroup, instOfIsLocalRingOfIsBezout, instValuationRingInteger, isFractionRing_iff, isInteger_or_isInteger, isLocalRing, le_total, le_total_ideal, mem_integer_iff, of_field, of_integers, range_algebraMap_eq, toPreValuationRing, unique_irreducible, isFractionRing_of_exists_eq_algebraMap_or_inv_eq_algebraMap_of_injective
31
Total46

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
preValuationRing πŸ“–mathematicalDFunLike.coe
MulHom
MulHom.funLike
PreValuationRingβ€”PreValuationRing.cond
map_mul
MulHom.mulHomClass
valuationRing πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
ValuationRingβ€”preValuationRing
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass

PreValuationRing

Theorems

NameKindAssumesProvesValidatesDepends On
cond πŸ“–β€”β€”β€”β€”cond'
cond' πŸ“–β€”β€”β€”β€”β€”
iff_dvd_total πŸ“–mathematicalβ€”PreValuationRing
Semigroup.toMul
semigroupDvd
β€”cond
iff_ideal_total πŸ“–mathematicalβ€”PreValuationRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”le_total
iff_dvd_total

Valuation.Integers

Theorems

NameKindAssumesProvesValidatesDepends On
isFractionRing πŸ“–mathematicalValuation.Integers
Field.toCommRing
IsFractionRing
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
β€”isFractionRing_of_exists_eq_algebraMap_or_inv_eq_algebraMap_of_injective
eq_algebraMap_or_inv_eq_algebraMap

ValuationRing

Definitions

NameCategoryTheorems
ValueGroup πŸ“–CompOp
5 mathmath: mem_integer_iff, range_algebraMap_eq, instNontrivialValueGroup, le_total, coe_equivInteger_apply
commGroupWithZero πŸ“–CompOpβ€”
equivInteger πŸ“–CompOp
1 mathmath: coe_equivInteger_apply
instInhabitedValueGroup πŸ“–CompOpβ€”
instInvValueGroup πŸ“–CompOpβ€”
instLEValueGroup πŸ“–CompOp
1 mathmath: le_total
instLinearOrderIdealOfDecidableLE πŸ“–CompOpβ€”
instMulValueGroup πŸ“–CompOpβ€”
instOneValueGroup πŸ“–CompOpβ€”
instZeroValueGroup πŸ“–CompOpβ€”
linearOrder πŸ“–CompOpβ€”
linearOrderedCommGroupWithZero πŸ“–CompOp
3 mathmath: mem_integer_iff, range_algebraMap_eq, coe_equivInteger_apply
valuation πŸ“–CompOp
3 mathmath: mem_integer_iff, range_algebraMap_eq, coe_equivInteger_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_equivInteger_apply πŸ“–mathematicalβ€”Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
ValueGroup
linearOrderedCommGroupWithZero
valuation
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subring.toCommRing
Field.toCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivInteger
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”β€”
cond πŸ“–β€”β€”β€”β€”PreValuationRing.cond
dvd_total πŸ“–mathematicalβ€”semigroupDvdβ€”PreValuationRing.iff_dvd_total
iff_dvd_total πŸ“–mathematicalβ€”ValuationRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”toPreValuationRing
PreValuationRing.iff_dvd_total
iff_ideal_total πŸ“–mathematicalβ€”ValuationRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”toPreValuationRing
PreValuationRing.iff_ideal_total
iff_isInteger_or_isInteger πŸ“–mathematicalβ€”ValuationRing
IsLocalization.IsInteger
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”IsFractionRing.div_surjective
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.injective
nonZeroDivisors.ne_zero
IsDomain.toNontrivial
cond
toPreValuationRing
eq_inv_of_mul_eq_one_left
mul_div
div_eq_one_iff_eq
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_comm
eq_div_iff
MulZeroClass.mul_zero
inv_div
iff_local_bezout_domain πŸ“–mathematicalβ€”ValuationRing
IsLocalRing
CommSemiring.toSemiring
CommRing.toCommSemiring
IsBezout
β€”isLocalRing
IsDomain.toNontrivial
toPreValuationRing
instIsBezout
instOfIsLocalRingOfIsBezout
instIsBezout πŸ“–mathematicalβ€”IsBezout
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsBezout.iff_span_pair_isPrincipal
Ideal.span_insert
toPreValuationRing
le_total
sup_eq_right
sup_eq_left
instIsFractionRingInteger πŸ“–mathematicalβ€”IsFractionRing
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
Valuation.instAlgebraSubtypeMemSubringInteger
Field.toCommRing
β€”Valuation.Integers.isFractionRing
Valuation.integer.integers
instNontrivialValueGroup πŸ“–mathematicalβ€”Nontrivial
ValueGroup
β€”Quotient.exact'
inv_smul_smul
smul_zero
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
instOfIsLocalRingOfIsBezout πŸ“–mathematicalβ€”ValuationRingβ€”iff_dvd_total
IsBezout.span_pair_isPrincipal
Ideal.mem_span_singleton'
Ideal.subset_span
Ideal.mem_span_pair
eq_or_ne
MulZeroClass.mul_zero
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
IsLocalRing.isUnit_or_isUnit_of_add_one
mul_dvd_mul_right
isUnit_iff_forall_dvd
isUnit_of_mul_isUnit_right
instIsDedekindFiniteMonoid
instValuationRingInteger πŸ“–mathematicalβ€”ValuationRing
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
Subring.toCommRing
Field.toCommRing
Subring.instIsDomainSubtypeMem
instIsDomain
Field.toSemifield
β€”of_integers
Valuation.integer.integers
isFractionRing_iff πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”isInteger_or_isInteger
IsFractionRing.injective
isFractionRing_of_exists_eq_algebraMap_or_inv_eq_algebraMap_of_injective
isInteger_or_isInteger πŸ“–mathematicalβ€”IsLocalization.IsInteger
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”iff_isInteger_or_isInteger
isLocalRing πŸ“–mathematicalβ€”IsLocalRing
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsLocalRing.of_isUnit_or_isUnit_one_sub_self
PreValuationRing.cond
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_add
Distrib.leftDistribClass
mul_one
sub_add_cancel
add_sub_cancel
le_total πŸ“–mathematicalβ€”ValueGroup
instLEValueGroup
β€”IsFractionRing.div_surjective
IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors
IsDomain.toNontrivial
cond
toPreValuationRing
Algebra.smul_def
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
le_total_ideal πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Mathlib.Tactic.Push.not_forall_eq
PreValuationRing.cond
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
mem_integer_iff πŸ“–mathematicalβ€”Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
ValueGroup
linearOrderedCommGroupWithZero
valuation
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”Algebra.smul_def
mul_one
of_field πŸ“–mathematicalβ€”ValuationRing
Field.toCommRing
instIsDomain
Field.toSemifield
β€”instIsDomain
instOfIsLocalRingOfIsBezout
Field.instIsLocalRing
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
of_integers πŸ“–mathematicalValuation.Integers
Field.toCommRing
ValuationRing
Function.Injective.isDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instIsDomain
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
algebraMap
β€”le_total
Valuation.Integers.dvd_of_le
Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
range_algebraMap_eq πŸ“–mathematicalβ€”Valuation.integer
ValueGroup
DivisionRing.toRing
Field.toDivisionRing
linearOrderedCommGroupWithZero
valuation
RingHom.range
CommRing.toRing
algebraMap
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Subring.ext
mem_integer_iff
toPreValuationRing πŸ“–mathematicalβ€”PreValuationRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
unique_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associatedβ€”dvd_total
associated_of_dvd_dvd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Irreducible.dvd_symm
Irreducible.dvd_comm

(root)

Definitions

NameCategoryTheorems
PreValuationRing πŸ“–CompData
4 mathmath: ValuationRing.toPreValuationRing, PreValuationRing.iff_dvd_total, PreValuationRing.iff_ideal_total, Function.Surjective.preValuationRing
ValuationRing πŸ“–CompData
16 mathmath: AlgebraicGeometry.ValuativeCommSq.valuationRing, ValuationRing.TFAE, ValuationRing.iff_isInteger_or_isInteger, ValuationRing.instOfIsLocalRingOfIsBezout, ArchimedeanClass.FiniteElement.instValuationRing, tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain, of_isDiscreteValuationRing, ValuationSubring.instValuationRingSubtypeMem, ValuationRing.iff_local_bezout_domain, ValuationRing.of_integers, ValuationRing.iff_ideal_total, IsDiscreteValuationRing.TFAE, Function.Surjective.valuationRing, ValuationRing.instValuationRingInteger, ValuationRing.iff_dvd_total, ValuationRing.of_field

Theorems

NameKindAssumesProvesValidatesDepends On
isFractionRing_of_exists_eq_algebraMap_or_inv_eq_algebraMap_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
IsFractionRing
Semifield.toCommSemiring
β€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
faithfulSMul_iff_algebraMap_injective
IsDomain.of_faithfulSMul
IsDomain.toNontrivial
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mul_one
map_zero
MonoidWithZeroHomClass.toZeroHomClass
eq_div_iff
one_div
inv_eq_iff_eq_inv
mem_nonZeroDivisors_of_ne_zero
IsDomain.to_noZeroDivisors
one_mul

---

← Back to Index