Documentation Verification Report

Compare

πŸ“ Source: Mathlib/RingTheory/WittVector/Compare.lean

Statistics

MetricCount
DefinitionszmodEquivTrunc, equiv, fromPadicInt, toPadicInt, toZModPow
5
Theoremscard_zmod, charP_zmod, commutes, commutes', commutes_symm, commutes_symm', eq_of_le_of_cast_pow_eq_zero, zmodEquivTrunc_apply, fromPadicInt_comp_toPadicInt, fromPadicInt_comp_toPadicInt_ext, toPadicInt_comp_fromPadicInt, toPadicInt_comp_fromPadicInt_ext, toZModPow_compat, zmodEquivTrunc_compat
14
Total19

TruncatedWittVector

Definitions

NameCategoryTheorems
zmodEquivTrunc πŸ“–CompOp
6 mathmath: commutes_symm', zmodEquivTrunc_apply, commutes, commutes', WittVector.zmodEquivTrunc_compat, commutes_symm

Theorems

NameKindAssumesProvesValidatesDepends On
card_zmod πŸ“–mathematicalβ€”Fintype.card
TruncatedWittVector
ZMod
instFintype
ZMod.fintype
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
Monoid.toNatPow
Nat.instMonoid
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
card
ZMod.card
charP_zmod πŸ“–mathematicalβ€”CharP
TruncatedWittVector
ZMod
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
ZMod.commRing
Monoid.toNatPow
Nat.instMonoid
β€”charP_of_prime_pow_injective
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
card_zmod
eq_of_le_of_cast_pow_eq_zero
ZMod.charP
commutes πŸ“–mathematicalβ€”RingHom.comp
ZMod
Monoid.toNatPow
Nat.instMonoid
TruncatedWittVector
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
instCommRing
truncate
RingEquiv.toRingHom
zmodEquivTrunc
ZMod.castHom
pow_dvd_pow
CommRing.toRing
ZMod.charP
β€”RingHom.ext_zmod
pow_dvd_pow
ZMod.charP
commutes' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
TruncatedWittVector
ZMod
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
ZMod.commRing
RingHom.instFunLike
truncate
RingEquiv
Monoid.toNatPow
Nat.instMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instMul
Distrib.toAdd
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
zmodEquivTrunc
Ring.toSemiring
CommRing.toRing
ZMod.castHom
pow_dvd_pow
ZMod.charP
β€”pow_dvd_pow
ZMod.charP
commutes
commutes_symm πŸ“–mathematicalβ€”RingHom.comp
TruncatedWittVector
ZMod
Monoid.toNatPow
Nat.instMonoid
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
ZMod.commRing
RingEquiv.toRingHom
RingEquiv.symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instMul
Distrib.toAdd
instAdd
zmodEquivTrunc
truncate
Ring.toSemiring
CommRing.toRing
ZMod.castHom
pow_dvd_pow
ZMod.charP
β€”RingHom.ext
pow_dvd_pow
ZMod.charP
commutes_symm'
commutes_symm' πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
TruncatedWittVector
ZMod
Monoid.toNatPow
Nat.instMonoid
instMul
ZMod.commRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instAdd
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
zmodEquivTrunc
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
truncate
Ring.toSemiring
CommRing.toRing
ZMod.castHom
pow_dvd_pow
ZMod.charP
β€”RingEquiv.injective
pow_dvd_pow
ZMod.charP
commutes'
RingEquiv.apply_symm_apply
eq_of_le_of_cast_pow_eq_zero πŸ“–β€”TruncatedWittVector
hasNatPow
instNatCast
instZero
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
lt_of_le_of_ne
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_natCast
ext_iff
WittVector.coeff_truncate
coeff_zero
WittVector.coeff_p_pow
one_ne_zero
NeZero.one
CharP.nontrivial_of_char_ne_one
Nat.Prime.ne_one
Fact.out
zmodEquivTrunc_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
ZMod
Monoid.toNatPow
Nat.instMonoid
TruncatedWittVector
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
instMul
Distrib.toAdd
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
zmodEquivTrunc
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
CommRing.toRing
instCommRing
RingHom.instFunLike
ZMod.castHom
charP_zmod
β€”β€”

WittVector

Definitions

NameCategoryTheorems
equiv πŸ“–CompOpβ€”
fromPadicInt πŸ“–CompOp
4 mathmath: fromPadicInt_comp_toPadicInt, fromPadicInt_comp_toPadicInt_ext, toPadicInt_comp_fromPadicInt_ext, toPadicInt_comp_fromPadicInt
toPadicInt πŸ“–CompOp
4 mathmath: fromPadicInt_comp_toPadicInt, fromPadicInt_comp_toPadicInt_ext, toPadicInt_comp_fromPadicInt_ext, toPadicInt_comp_fromPadicInt
toZModPow πŸ“–CompOp
1 mathmath: toZModPow_compat

Theorems

NameKindAssumesProvesValidatesDepends On
fromPadicInt_comp_toPadicInt πŸ“–mathematicalβ€”RingHom.comp
WittVector
ZMod
PadicInt
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
ZMod.commRing
PadicInt.instCommRing
fromPadicInt
toPadicInt
RingHom.id
β€”hom_ext
zmodEquivTrunc_compat
fromPadicInt.eq_1
RingHom.comp_assoc
truncate_comp_lift
PadicInt.lift_spec
toZModPow_compat
RingEquiv.toRingHom_comp_symm_toRingHom
RingHom.id_comp
RingHom.comp_id
fromPadicInt_comp_toPadicInt_ext πŸ“–mathematicalβ€”DFunLike.coe
RingHom
WittVector
ZMod
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
ZMod.commRing
RingHom.instFunLike
RingHom.comp
PadicInt
PadicInt.instCommRing
fromPadicInt
toPadicInt
RingHom.id
β€”fromPadicInt_comp_toPadicInt
toPadicInt_comp_fromPadicInt πŸ“–mathematicalβ€”RingHom.comp
PadicInt
WittVector
ZMod
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
instCommRing
ZMod.commRing
toPadicInt
fromPadicInt
RingHom.id
β€”PadicInt.toZModPow_eq_iff_ext
RingHom.comp_assoc
toZModPow_compat
toPadicInt.eq_1
PadicInt.lift_spec
zmodEquivTrunc_compat
RingHom.comp_id
truncate_comp_lift
RingEquiv.symm_toRingHom_comp_toRingHom
RingHom.id_comp
toPadicInt_comp_fromPadicInt_ext πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PadicInt
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
RingHom.instFunLike
RingHom.comp
WittVector
ZMod
instCommRing
ZMod.commRing
toPadicInt
fromPadicInt
RingHom.id
β€”toPadicInt_comp_fromPadicInt
toZModPow_compat πŸ“–mathematicalβ€”RingHom.comp
WittVector
ZMod
Monoid.toNatPow
Nat.instMonoid
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
ZMod.commRing
Ring.toSemiring
CommRing.toRing
ZMod.castHom
pow_dvd_pow
ZMod.charP
toZModPow
β€”pow_dvd_pow
ZMod.charP
TruncatedWittVector.commutes_symm
RingHom.comp_assoc
TruncatedWittVector.truncate_comp_wittVector_truncate
zmodEquivTrunc_compat πŸ“–mathematicalβ€”RingHom.comp
PadicInt
TruncatedWittVector
ZMod
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
TruncatedWittVector.instCommRing
ZMod.commRing
TruncatedWittVector.truncate
Monoid.toNatPow
Nat.instMonoid
RingEquiv.toRingHom
TruncatedWittVector.zmodEquivTrunc
PadicInt.toZModPow
β€”RingHom.comp_assoc
pow_dvd_pow
ZMod.charP
TruncatedWittVector.commutes
PadicInt.zmod_cast_comp_toZModPow

---

← Back to Index