Documentation Verification Report

DiscreteValuationRing

πŸ“ Source: Mathlib/RingTheory/WittVector/DiscreteValuationRing.lean

Statistics

MetricCount
DefinitionsinverseCoeff, mkUnit, succNthValUnits
3
Theoremscoe_mkUnit, exists_eq_pow_p_mul, exists_eq_pow_p_mul', irreducible, isDiscreteValuationRing, isUnit_of_coeff_zero_ne_zero
6
Total9

WittVector

Definitions

NameCategoryTheorems
inverseCoeff πŸ“–CompOpβ€”
mkUnit πŸ“–CompOp
1 mathmath: coe_mkUnit
succNthValUnits πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mkUnit πŸ“–mathematicalcoeff
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
WittVector
instCommRing
mkUnit
β€”β€”
exists_eq_pow_p_mul πŸ“–mathematicalβ€”WittVector
instMul
hasNatPow
instNatCast
β€”expChar_prime
verschiebung_nonzero
Function.Surjective.iterate
Function.Bijective.surjective
frobenius_bijective
Function.Commute.comp_iterate
verschiebung_frobenius_comm
Mathlib.Tactic.Contrapose.contraposeβ‚„
zero_pow
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.Prime.ne_zero
Fact.out
iterate_frobenius_coeff
mul_left_iterate
mul_comm
verschiebung_frobenius
exists_eq_pow_p_mul' πŸ“–mathematicalβ€”WittVector
instMul
EuclideanDomain.toCommRing
Field.toEuclideanDomain
hasNatPow
instNatCast
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”expChar_prime
exists_eq_pow_p_mul
irreducible πŸ“–mathematicalβ€”Irreducible
WittVector
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instNatCast
β€”coeff_p_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingHom.isUnit_map
mul_ne_zero_iff
instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
instIsDomain
p_nonzero
verschiebung_nonzero
isUnit_of_coeff_zero_ne_zero
one_ne_zero
NeZero.one
coeff_p_one
add_comm
Function.iterate_succ'
iterate_verschiebung_mul
isDiscreteValuationRing πŸ“–mathematicalβ€”IsDiscreteValuationRing
WittVector
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
instIsDomain
Field.toSemifield
β€”expChar_prime
IsDiscreteValuationRing.ofHasUnitMulPowIrreducibleFactorization
instIsDomain
instIsDomain
irreducible
exists_eq_pow_p_mul'
isUnit_of_coeff_zero_ne_zero πŸ“–mathematicalβ€”IsUnit
WittVector
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Units.isUnit

---

← Back to Index