Documentation Verification Report

FrobeniusFractionField

πŸ“ Source: Mathlib/RingTheory/WittVector/FrobeniusFractionField.lean

Statistics

MetricCount
Definitionssolution, succNthDefiningPoly, succNthVal, frobeniusRotation, frobeniusRotationCoeff
5
Theoremssolution_nonzero, solution_pow, solution_spec, solution_spec', root_exists, succNthDefiningPoly_degree, succNthVal_spec, succNthVal_spec', exists_frobenius_solution_fractionRing, exists_frobenius_solution_fractionRing_aux, frobeniusRotation_nonzero, frobenius_frobeniusRotation
12
Total17

WittVector

Definitions

NameCategoryTheorems
frobeniusRotation πŸ“–CompOp
2 mathmath: frobenius_frobeniusRotation, exists_frobenius_solution_fractionRing_aux
frobeniusRotationCoeff πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_frobenius_solution_fractionRing πŸ“–mathematicalβ€”FractionRing
WittVector
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
OreLocalization.instMul
CommMonoid.toMonoid
CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
OreLocalization.oreSetComm
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
OreLocalization.instCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
IsFractionRing.ringEquivOfRingEquiv
OreLocalization.instAlgebra
Algebra.id
Localization.isLocalization
frobeniusEquiv
PerfectField.toPerfectRing
IsAlgClosed.perfectField
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
OreLocalization.instDivisionRingNonZeroDivisors
CommRing.toRing
instNontrivial
IsLocalRing.toNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Field.instIsLocalRing
instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
instIsDomain
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
OreLocalization.instRing
β€”Localization.induction_on
Localization.isLocalization
PerfectField.toPerfectRing
IsAlgClosed.perfectField
expChar_prime
instNontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
instIsDomain
mem_nonZeroDivisors_iff_ne_zero
IsDomain.toNontrivial
instIsDomain
FractionRing.mk_eq_div
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_div
exists_eq_pow_p_mul
IsFractionRing.injective
frobeniusRotation_nonzero
exists_frobenius_solution_fractionRing_aux
exists_frobenius_solution_fractionRing_aux πŸ“–mathematicalWittVector
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
instMul
hasNatPow
instNatCast
Localization
CommRing.toCommMonoid
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.oreSetComm
DFunLike.coe
RingEquiv
FractionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
OreLocalization.instCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
IsFractionRing.ringEquivOfRingEquiv
OreLocalization.instAlgebra
Algebra.id
Localization.isLocalization
frobeniusEquiv
PerfectField.toPerfectRing
IsAlgClosed.perfectField
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
RingHom
OreLocalization.instSemiring
RingHom.instFunLike
algebraMap
frobeniusRotation
Monoid.toMulOneClass
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
OreLocalization.instDivisionRingNonZeroDivisors
CommRing.toRing
instNontrivial
IsLocalRing.toNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Field.instIsLocalRing
instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
instIsDomain
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
OreLocalization.instRing
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
frobenius_frobeniusRotation
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
zero_coeff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.injective
Localization.isLocalization
PerfectField.toPerfectRing
IsAlgClosed.perfectField
expChar_prime
instNontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
instIsDomain
zpow_subβ‚€
FractionRing.p_nonzero
IsDomain.toNontrivial
instIsDomain
IsFractionRing.ringEquivOfRingEquiv_algebraMap
FractionRing.mk_eq_div
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
map_natCast
zpow_natCast
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
isReduced_of_noZeroDivisors
Localization.instNoZeroDivisors
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
frobeniusRotation_nonzero πŸ“–β€”β€”β€”β€”RecursionBase.solution_nonzero
zero_coeff
frobenius_frobeniusRotation πŸ“–mathematicalβ€”WittVector
instMul
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
frobenius
frobeniusRotation
β€”ext
mul_coeff_zero
coeff_frobenius_charP
RecursionBase.solution_spec'
nthRemainder_spec
frobeniusRotationCoeff.eq_2
RecursionMain.succNthVal_spec'
TruncatedWittVector.ext
coeff_truncateFun

WittVector.RecursionBase

Definitions

NameCategoryTheorems
solution πŸ“–CompOp
2 mathmath: solution_spec, solution_spec'

Theorems

NameKindAssumesProvesValidatesDepends On
solution_nonzero πŸ“–β€”β€”β€”β€”solution_spec
div_eq_zero_iff
zero_pow
Nat.Prime.one_lt
Fact.out
solution_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
WittVector.coeff
β€”IsAlgClosed.exists_pow_nat_eq
tsub_pos_of_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.Prime.one_lt
Fact.out
solution_spec πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
solution
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
WittVector.coeff
β€”solution_pow
solution_spec' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
solution
WittVector.coeff
β€”solution_spec
Nat.Prime.ne_zero
Fact.out

WittVector.RecursionMain

Definitions

NameCategoryTheorems
succNthDefiningPoly πŸ“–CompOp
3 mathmath: succNthDefiningPoly_degree, succNthVal_spec, root_exists
succNthVal πŸ“–CompOp
2 mathmath: succNthVal_spec', succNthVal_spec

Theorems

NameKindAssumesProvesValidatesDepends On
root_exists πŸ“–mathematicalβ€”Polynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
succNthDefiningPoly
β€”IsAlgClosed.exists_root
succNthDefiningPoly_degree
instIsDomain
WithBot.charZero
Nat.instCharZero
Nat.Prime.ne_zero
Fact.out
succNthDefiningPoly_degree πŸ“–mathematicalβ€”Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
succNthDefiningPoly
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
β€”Polynomial.degree_mul
IsDomain.to_noZeroDivisors
Polynomial.degree_C
pow_ne_zero
isReduced_of_noZeroDivisors
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
Polynomial.degree_pow
IsDomain.toNontrivial
Polynomial.degree_X
Nat.smul_one_eq_cast
add_zero
Polynomial.degree_sub_eq_left_of_degree_lt
Nat.cast_one
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Nat.Prime.one_lt
Fact.out
succNthDefiningPoly.eq_1
Polynomial.degree_add_eq_left_of_degree_lt
lt_of_le_of_lt
Polynomial.degree_C_le
Nat.cast_zero
Nat.Prime.pos
succNthVal_spec πŸ“–mathematicalβ€”Polynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
succNthDefiningPoly
succNthVal
β€”root_exists
succNthVal_spec' πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
succNthVal
WittVector.coeff
Nat.instMonoid
WittVector.nthRemainder
WittVector.truncateFun
β€”sub_eq_zero
succNthVal_spec
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Polynomial.eval_add
Polynomial.eval_sub
Polynomial.eval_mul
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_C

---

← Back to Index