Documentation Verification Report

Isocrystal

šŸ“ Source: Mathlib/RingTheory/WittVector/Isocrystal.lean

Statistics

MetricCount
DefinitionsĀ«termK(_,_)»»), Ā«term_→ᶠ˔[_,_]_Ā», Ā«term_→ᶠⁱ[_,_]_Ā», Ā«term_ā‰ƒį¶ Ė”[_,_]_Ā», Ā«term_ā‰ƒį¶ ā±[_,_]_Ā», Ā«termΦ(_,_)»»), Ā«termφ(_,_)»»), frobenius, frobeniusRingHom, Isocrystal, frob, frobenius, toModule, IsocrystalEquiv, toLinearEquiv, IsocrystalHom, toLinearMap, StandardOneDimIsocrystal, instAddCommGroupStandardOneDimIsocrystal, instIsocrystalStandardOneDimIsocrystal, instModuleFractionRingStandardOneDimIsocrystal
21
Theoremsfrob_equivariant, frob_equivariant, frobenius_apply, inv_pair₁, inv_pairā‚‚, isocrystal_classification
6
Total27

Isocrystal

Definitions

NameCategoryTheorems
Ā«termK(_,_)Ā» šŸ“–Ā» "API Documentation")CompOp—
Ā«term_→ᶠ˔[_,_]_Ā» šŸ“–CompOp—
Ā«term_→ᶠⁱ[_,_]_Ā» šŸ“–CompOp—
Ā«term_ā‰ƒį¶ Ė”[_,_]_Ā» šŸ“–CompOp—
Ā«term_ā‰ƒį¶ ā±[_,_]_Ā» šŸ“–CompOp—
Ā«termΦ(_,_)Ā» šŸ“–Ā» "API Documentation")CompOp—
Ā«termφ(_,_)Ā» šŸ“–Ā» "API Documentation")CompOp—

WittVector

Definitions

NameCategoryTheorems
Isocrystal šŸ“–CompData—
IsocrystalEquiv šŸ“–CompData
1 mathmath: isocrystal_classification
IsocrystalHom šŸ“–CompData—
StandardOneDimIsocrystal šŸ“–CompOp
2 mathmath: StandardOneDimIsocrystal.frobenius_apply, isocrystal_classification
instAddCommGroupStandardOneDimIsocrystal šŸ“–CompOp
2 mathmath: StandardOneDimIsocrystal.frobenius_apply, isocrystal_classification
instIsocrystalStandardOneDimIsocrystal šŸ“–CompOp
2 mathmath: StandardOneDimIsocrystal.frobenius_apply, isocrystal_classification
instModuleFractionRingStandardOneDimIsocrystal šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
inv_pair₁ šŸ“–mathematical—RingHomInvPair
FractionRing
WittVector
instCommRing
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
FractionRing.frobeniusRingHom
RingHomClass.toRingHom
RingEquiv
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
FractionRing.frobenius
—expChar_prime
RingHomInvPair.of_ringEquiv
inv_pairā‚‚ šŸ“–mathematical—RingHomInvPair
FractionRing
WittVector
instCommRing
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
RingHomClass.toRingHom
RingEquiv
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
FractionRing.frobenius
—expChar_prime
RingHomInvPair.of_ringEquiv
isocrystal_classification šŸ“–mathematicalModule.finrank
FractionRing
WittVector
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
AddCommGroup.toAddCommMonoid
Isocrystal.toModule
PerfectField.toPerfectRing
IsAlgClosed.perfectField
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
IsocrystalEquiv
StandardOneDimIsocrystal
instAddCommGroupStandardOneDimIsocrystal
instIsocrystalStandardOneDimIsocrystal
instIsDomain
Field.toSemifield
—PerfectField.toPerfectRing
IsAlgClosed.perfectField
expChar_prime
instIsDomain
exists_ne
Module.nontrivial_of_finrank_eq_succ
FractionRing.instNontrivial
instNontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
inv_pair₁
inv_pairā‚‚
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
LinearEquiv.injective
instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
finrank_eq_one_iff_of_nonzero'
zero_smul
Localization.isLocalization
exists_frobenius_solution_fractionRing
RingHomInvPair.ids
LinearMap.ker_eq_bot
LinearMap.ker_toSpanSingleton
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHomSurjective.ids
LinearMap.range_eq_top
finrank_eq_one_iff_of_nonzero
LinearMap.span_singleton_eq_range
RingHomCompTriple.ids
LinearEquiv.trans_apply
LinearEquiv.smulOfNeZero_apply
LinearEquiv.map_smul
LinearEquiv.ofBijective_apply
IsDomain.toNontrivial
StandardOneDimIsocrystal.frobenius_apply
LinearMap.toSpanSingleton_apply
MulActionSemiHomClass.map_smulₛₗ
SemilinearMapClass.toMulActionSemiHomClass
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero

WittVector.FractionRing

Definitions

NameCategoryTheorems
frobenius šŸ“–CompOp
5 mathmath: WittVector.IsocrystalHom.frob_equivariant, WittVector.IsocrystalEquiv.frob_equivariant, WittVector.inv_pairā‚‚, WittVector.inv_pair₁, WittVector.StandardOneDimIsocrystal.frobenius_apply
frobeniusRingHom šŸ“–CompOp
4 mathmath: WittVector.IsocrystalHom.frob_equivariant, WittVector.IsocrystalEquiv.frob_equivariant, WittVector.inv_pair₁, WittVector.StandardOneDimIsocrystal.frobenius_apply

WittVector.Isocrystal

Definitions

NameCategoryTheorems
frob šŸ“–CompOp—
frobenius šŸ“–CompOp
3 mathmath: WittVector.IsocrystalHom.frob_equivariant, WittVector.IsocrystalEquiv.frob_equivariant, WittVector.StandardOneDimIsocrystal.frobenius_apply
toModule šŸ“–CompOp
3 mathmath: WittVector.IsocrystalHom.frob_equivariant, WittVector.IsocrystalEquiv.frob_equivariant, WittVector.StandardOneDimIsocrystal.frobenius_apply

WittVector.IsocrystalEquiv

Definitions

NameCategoryTheorems
toLinearEquiv šŸ“–CompOp
1 mathmath: frob_equivariant

Theorems

NameKindAssumesProvesValidatesDepends On
frob_equivariant šŸ“–mathematical—DFunLike.coe
LinearEquiv
FractionRing
WittVector
WittVector.instCommRing
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
WittVector.FractionRing.frobeniusRingHom
RingHomClass.toRingHom
RingEquiv
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
WittVector.FractionRing.frobenius
WittVector.inv_pair₁
WittVector.inv_pairā‚‚
AddCommGroup.toAddCommMonoid
WittVector.Isocrystal.toModule
DFinsupp.instEquivLikeLinearEquiv
WittVector.Isocrystal.frobenius
RingHom.id
RingHomInvPair.ids
toLinearEquiv
—expChar_prime

WittVector.IsocrystalHom

Definitions

NameCategoryTheorems
toLinearMap šŸ“–CompOp
1 mathmath: frob_equivariant

Theorems

NameKindAssumesProvesValidatesDepends On
frob_equivariant šŸ“–mathematical—DFunLike.coe
LinearEquiv
FractionRing
WittVector
WittVector.instCommRing
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
WittVector.FractionRing.frobeniusRingHom
RingHomClass.toRingHom
RingEquiv
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
WittVector.FractionRing.frobenius
WittVector.inv_pair₁
WittVector.inv_pairā‚‚
AddCommGroup.toAddCommMonoid
WittVector.Isocrystal.toModule
DFinsupp.instEquivLikeLinearEquiv
WittVector.Isocrystal.frobenius
LinearMap
RingHom.id
LinearMap.instFunLike
toLinearMap
—expChar_prime

WittVector.StandardOneDimIsocrystal

Theorems

NameKindAssumesProvesValidatesDepends On
frobenius_apply šŸ“–mathematical—DFunLike.coe
LinearEquiv
FractionRing
WittVector
WittVector.instCommRing
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
WittVector.FractionRing.frobeniusRingHom
RingHomClass.toRingHom
RingEquiv
OreLocalization.instMul
CommMonoid.toMonoid
OreLocalization.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
WittVector.FractionRing.frobenius
WittVector.inv_pair₁
WittVector.inv_pairā‚‚
WittVector.StandardOneDimIsocrystal
AddCommGroup.toAddCommMonoid
WittVector.instAddCommGroupStandardOneDimIsocrystal
WittVector.Isocrystal.toModule
WittVector.instIsocrystalStandardOneDimIsocrystal
DFinsupp.instEquivLikeLinearEquiv
WittVector.Isocrystal.frobenius
OreLocalization.instSMul
Monoid.toMulAction
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
OreLocalization.instDivisionRingNonZeroDivisors
WittVector.instNontrivial
IsDomain.toNontrivial
WittVector.instNoZeroDivisorsOfCharP
IsDomain.to_noZeroDivisors
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
OreLocalization.instRing
RingHom
RingHom.instFunLike
—expChar_prime
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
WittVector.inv_pair₁
WittVector.inv_pairā‚‚

---

← Back to Index