Isocrystal
š Source: Mathlib/RingTheory/WittVector/Isocrystal.lean
Statistics
Isocrystal
Definitions
| Name | Category | Theorems |
|---|---|---|
Ā«termK(_,_)Ā» šĀ» "API Documentation") | CompOp | ā |
Ā«term_āį¶ Ė”[_,_]_Ā» š | CompOp | ā |
Ā«term_āį¶ ā±[_,_]_Ā» š | CompOp | ā |
Ā«term_āį¶ Ė”[_,_]_Ā» š | CompOp | ā |
Ā«term_āį¶ ā±[_,_]_Ā» š | CompOp | ā |
Ā«termΦ(_,_)Ā» šĀ» "API Documentation") | CompOp | ā |
Ā«termĻ(_,_)Ā» šĀ» "API Documentation") | CompOp | ā |
WittVector
Definitions
| Name | Category | Theorems |
|---|---|---|
Isocrystal š | CompData | ā |
IsocrystalEquiv š | CompData | |
IsocrystalHom š | CompData | ā |
StandardOneDimIsocrystal š | CompOp | |
instAddCommGroupStandardOneDimIsocrystal š | CompOp | |
instIsocrystalStandardOneDimIsocrystal š | CompOp | |
instModuleFractionRingStandardOneDimIsocrystal š | CompOp | ā |
Theorems
WittVector.FractionRing
Definitions
| Name | Category | Theorems |
|---|---|---|
frobenius š | CompOp | |
frobeniusRingHom š | CompOp |
WittVector.Isocrystal
Definitions
| Name | Category | Theorems |
|---|---|---|
frob š | CompOp | ā |
frobenius š | CompOp | |
toModule š | CompOp |
WittVector.IsocrystalEquiv
Definitions
| Name | Category | Theorems |
|---|---|---|
toLinearEquiv š | CompOp |
Theorems
WittVector.IsocrystalHom
Definitions
| Name | Category | Theorems |
|---|---|---|
toLinearMap š | CompOp |
Theorems
WittVector.StandardOneDimIsocrystal
Theorems
---