Documentation Verification Report

MulP

šŸ“ Source: Mathlib/RingTheory/WittVector/MulP.lean

Statistics

MetricCount
DefinitionswittMulN
1
Theoremsbind₁_wittMulN_wittPolynomial, mulN_coeff, mulN_isPoly
3
Total4

WittVector

Definitions

NameCategoryTheorems
wittMulN šŸ“–CompOp
2 mathmath: mulN_coeff, bind₁_wittMulN_wittPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
bind₁_wittMulN_wittPolynomial šŸ“–mathematical—DFunLike.coe
AlgHom
MvPolynomial
Int.instCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.bind₁
wittMulN
wittPolynomial
Int.instCommRing
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
—bind₁_zero_wittPolynomial
CharP.cast_eq_zero
MvPolynomial.instCharP
CharP.ofCharZero
Int.instCharZero
MulZeroClass.zero_mul
wittMulN.eq_2
MvPolynomial.bind₁_bind₁
wittAdd.eq_1
wittStructureInt_prop
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
MvPolynomial.bind₁_X_right
Nat.cast_succ
add_mul
Distrib.rightDistribClass
one_mul
MvPolynomial.bind₁_rename
MvPolynomial.bind₁_X_left
mulN_coeff šŸ“–mathematical—coeff
WittVector
instMul
instNatCast
DFunLike.coe
AlgHom
MvPolynomial
Int.instCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
MvPolynomial.algebra
Algebra.id
Ring.toIntAlgebra
CommRing.toRing
AlgHom.funLike
MvPolynomial.aeval
wittMulN
—Nat.cast_zero
MulZeroClass.mul_zero
zero_coeff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
wittMulN.eq_2
Nat.cast_add
Nat.cast_one
mul_add
Distrib.leftDistribClass
mul_one
MvPolynomial.aeval_bind₁
add_coeff
MvPolynomial.evalā‚‚Hom_congr
RingHom.ext_int
Fintype.complete
Matrix.cons_val'
Matrix.cons_val_fin_one
MvPolynomial.aeval_X
mulN_isPoly šŸ“–mathematical—IsPoly
WittVector
instMul
instNatCast
—mulN_coeff

---

← Back to Index