π Source: Mathlib/RingTheory/ZMod/UnitsCyclic.lean
exists_one_add_mul_pow_prime_eq
exists_one_add_mul_pow_prime_pow_eq
isCyclic_units_four
isCyclic_units_four_mul_iff
isCyclic_units_iff
isCyclic_units_iff_of_odd
isCyclic_units_of_prime_pow
isCyclic_units_one
isCyclic_units_prime
isCyclic_units_two
isCyclic_units_two_mul_iff_of_odd
isCyclic_units_two_pow_iff
isCyclic_units_zero
not_isCyclic_units_eight
not_isCyclic_units_of_mul_coprime
orderOf_five
orderOf_one_add_four_mul
orderOf_one_add_mul_prime
orderOf_one_add_mul_prime_pow
orderOf_one_add_prime
Nat.Prime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
AddMonoidWithOne.toOne
add_comm
add_pow
Finset.add_sum_erase
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
one_pow
Finset.sum_congr
pow_zero
Nat.choose_zero_right
Nat.cast_one
mul_one
Nat.Prime.pos
Finset.sum_erase_add
Nat.two_le_iff
Nat.Prime.two_le
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instZeroLEOneClass
mul_add
Distrib.leftDistribClass
Nat.choose_one_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Finset.mul_sum
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Nat.Prime.dvd_choose_self
Nat.cast_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
mul_pow
Nat.choose_self
Nat.instMonoid
one_mul
MulZeroClass.mul_zero
pow_succ'
pow_mul
mul_dvd_mul_left
mul_assoc
mul_comm
mul_dvd_mul
pow_two
pow_dvd_pow
Mathlib.Tactic.Ring.add_pf_add_gt
IsCyclic
Units
ZMod
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
isCyclic_of_prime_card
Nat.fact_prime_two
Nat.card_eq_fintype_card
card_units_eq_totient
eq_or_ne
em
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instCharZero
isCyclic_of_surjective
MonoidHom.instMonoidHomClass
dvd_mul_right
unitsMap_surjective
Nat.Prime.coprime_iff_not_dvd
Nat.prime_two
MulEquiv.isCyclic
Group.isCyclic_prod_iff
Nat.odd_totient_iff
Odd
Nat.instSemiring
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
Nat.instIsMulTorsionFree
Nat.even_or_odd
Distrib.rightDistribClass
Mathlib.Tactic.Contrapose.contraposeβ
Even.two_dvd
Odd.pow
zero_lt_two
Nat.not_odd_zero
Nat.prime_three
Nat.exists_prime_and_dvd
Odd.of_dvd_nat
Odd.ne_two_of_dvd_nat
dvd_rfl
Nat.ordProj_dvd
LT.lt.ne'
Nat.Prime.factorization_pos_of_dvd
Nat.Prime.ne_one
Mathlib.Tactic.Contrapose.contraposeβ
Nat.coprime_ordCompl
Nat.prime_dvd_prime_iff_eq
Nat.Prime.dvd_of_dvd_pow
Nat.factorization_pow
Nat.Prime.factorization_self
pow_ne_zero
isReduced_of_noZeroDivisors
Nat.Prime.ne_zero
isCyclic_of_subsingleton
Unique.instSubsingleton
Nat.cast_add
isUnit_iff_coprime
orderOf_injective
Units.coeHom_injective
Units.coeHom_apply
IsUnit.unit_spec
isCyclic_iff_exists_orderOf_eq_natCard
instFiniteZModUnits
Dvd.intro_left
NeZero.of_gt'
Nat.Prime.one_lt'
orderOf_map_dvd
orderOf_pow_orderOf_div
orderOf_pos
Commute.orderOf_mul_eq_mul_orderOf_of_coprime
Commute.all
Nat.coprime_self_sub_right
zero_add
Nat.totient_prime_pow_succ
card_units
instIsCyclicUnitsOfFinite
instIsDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Nat.coprime_two_left
Nat.totient_two
instIsDomainOfNatNat
IsCyclic.iff_exponent_eq_card
Monoid.exponent_dvd_of_forall_pow_eq_one
Nat.ne_of_odd_add
orderOf
instOfNatAtLeastTwo
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_intCast
Int.instSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
two_ne_zero
le_rfl
even_iff_two_dvd
Int.not_even_iff_odd
one_ne_zero
Nat.cast_pow
natCast_self
MulZeroClass.zero_mul
orderOf_one
dvd_pow_self
pow_succ
orderOf_eq_prime_pow
pow_add
add_eq_left
add_right_comm
Int.cast_natCast
Int.cast_mul
intCast_zmod_eq_zero_iff_dvd
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Int.instNontrivial
CharP.cast_eq_zero
charP
Int.cast_one
Int.instCharZero
---
β Back to Index