Documentation Verification Report

UnitsCyclic

πŸ“ Source: Mathlib/RingTheory/ZMod/UnitsCyclic.lean

Statistics

MetricCount
Definitions0
Theoremsexists_one_add_mul_pow_prime_eq, exists_one_add_mul_pow_prime_pow_eq, isCyclic_units_four, isCyclic_units_four_mul_iff, isCyclic_units_iff, isCyclic_units_iff_of_odd, isCyclic_units_of_prime_pow, isCyclic_units_one, isCyclic_units_prime, isCyclic_units_two, isCyclic_units_two_mul_iff_of_odd, isCyclic_units_two_pow_iff, isCyclic_units_zero, not_isCyclic_units_eight, not_isCyclic_units_of_mul_coprime, orderOf_five, orderOf_one_add_four_mul, orderOf_one_add_mul_prime, orderOf_one_add_mul_prime_pow, orderOf_one_add_prime
20
Total20

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
exists_one_add_mul_pow_prime_eq πŸ“–mathematicalNat.Prime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
AddMonoidWithOne.toOne
β€”add_comm
add_pow
Finset.add_sum_erase
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
one_pow
Finset.sum_congr
pow_zero
Nat.choose_zero_right
Nat.cast_one
mul_one
Nat.Prime.pos
Finset.sum_erase_add
Nat.two_le_iff
Nat.Prime.two_le
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instZeroLEOneClass
mul_add
Distrib.leftDistribClass
Nat.choose_one_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Finset.mul_sum
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Nat.Prime.dvd_choose_self
Nat.cast_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
mul_pow
Nat.choose_self
exists_one_add_mul_pow_prime_pow_eq πŸ“–mathematicalNat.Prime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
AddMonoidWithOne.toOne
Nat.instMonoid
β€”pow_zero
pow_one
one_mul
MulZeroClass.mul_zero
add_zero
pow_succ'
pow_mul
exists_one_add_mul_pow_prime_eq
mul_dvd_mul_left
mul_pow
mul_assoc
mul_comm
mul_dvd_mul
pow_two
pow_dvd_pow
Nat.Prime.two_le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_one_cast
isCyclic_units_four πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”isCyclic_of_prime_card
Nat.fact_prime_two
Nat.card_eq_fintype_card
card_units_eq_totient
isCyclic_units_four_mul_iff πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”eq_or_ne
em
mul_assoc
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
isCyclic_of_surjective
MonoidHom.instMonoidHomClass
dvd_mul_right
unitsMap_surjective
not_isCyclic_units_eight
Nat.Prime.coprime_iff_not_dvd
Nat.prime_two
MulEquiv.isCyclic
Group.isCyclic_prod_iff
Nat.card_eq_fintype_card
card_units_eq_totient
Nat.odd_totient_iff
isCyclic_units_iff πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
Nat.Prime
Odd
Nat.instSemiring
Monoid.toNatPow
Nat.instMonoid
β€”Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
Nat.instIsMulTorsionFree
Nat.even_or_odd
isCyclic_units_iff_of_odd
Distrib.rightDistribClass
Mathlib.Tactic.Contrapose.contraposeβ‚‚
pow_zero
Even.two_dvd
isCyclic_units_two_mul_iff_of_odd
Odd.pow
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_one
mul_assoc
isCyclic_units_four_mul_iff
isCyclic_units_iff_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
β€”Nat.not_odd_zero
eq_or_ne
Nat.prime_three
pow_zero
Nat.exists_prime_and_dvd
Odd.of_dvd_nat
isCyclic_units_of_prime_pow
Odd.ne_two_of_dvd_nat
dvd_rfl
Nat.ordProj_dvd
not_isCyclic_units_of_mul_coprime
Nat.instIsMulTorsionFree
LT.lt.ne'
Nat.Prime.factorization_pos_of_dvd
Nat.Prime.ne_one
Mathlib.Tactic.Contrapose.contraposeβ‚„
one_mul
Nat.coprime_ordCompl
Nat.prime_dvd_prime_iff_eq
Nat.Prime.dvd_of_dvd_pow
Nat.factorization_pow
Nat.Prime.factorization_self
mul_one
isCyclic_units_of_prime_pow πŸ“–mathematicalNat.PrimeIsCyclic
Units
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.Prime.ne_zero
pow_zero
isCyclic_of_subsingleton
Unique.instSubsingleton
Nat.cast_one
Nat.cast_add
isUnit_iff_coprime
orderOf_injective
Units.coeHom_injective
Units.coeHom_apply
IsUnit.unit_spec
orderOf_one_add_prime
isCyclic_iff_exists_orderOf_eq_natCard
instFiniteZModUnits
isCyclic_units_prime
Dvd.intro_left
unitsMap_surjective
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
orderOf_map_dvd
orderOf_pow_orderOf_div
LT.lt.ne'
orderOf_pos
Commute.orderOf_mul_eq_mul_orderOf_of_coprime
Commute.all
Nat.coprime_self_sub_right
Nat.Prime.pos
zero_add
Nat.card_eq_fintype_card
card_units_eq_totient
Nat.totient_prime_pow_succ
card_units
isCyclic_units_one πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”isCyclic_of_subsingleton
Unique.instSubsingleton
isCyclic_units_prime πŸ“–mathematicalNat.PrimeIsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”instIsCyclicUnitsOfFinite
instIsDomain
instFiniteZModUnits
isCyclic_units_two πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Nat.fact_prime_two
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”Nat.fact_prime_two
instIsCyclicUnitsOfFinite
instIsDomain
instFiniteZModUnits
isCyclic_units_two_mul_iff_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”Nat.fact_prime_two
MulEquiv.isCyclic
Nat.coprime_two_left
Nat.card_eq_fintype_card
card_units_eq_totient
Nat.totient_two
isCyclic_units_two_pow_iff πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”Nat.instCanonicallyOrderedAdd
isCyclic_units_prime
Nat.prime_two
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
not_isCyclic_units_eight
pow_dvd_pow
isCyclic_of_surjective
MonoidHom.instMonoidHomClass
unitsMap_surjective
isCyclic_units_zero πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”instIsCyclicUnitsOfFinite
instIsDomainOfNatNat
instFiniteZModUnits
not_isCyclic_units_eight πŸ“–mathematicalβ€”IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”IsCyclic.iff_exponent_eq_card
instFiniteZModUnits
Nat.card_eq_fintype_card
card_units_eq_totient
Monoid.exponent_dvd_of_forall_pow_eq_one
not_isCyclic_units_of_mul_coprime πŸ“–mathematicalOdd
Nat.instSemiring
IsCyclic
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”Nat.ne_of_odd_add
MulEquiv.isCyclic
Group.isCyclic_prod_iff
card_units_eq_totient
Nat.card_eq_fintype_card
orderOf_five πŸ“–mathematicalβ€”orderOf
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_add
Nat.cast_one
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_intCast
orderOf_one_add_four_mul
orderOf_one_add_four_mul πŸ“–mathematicalOdd
Int.instSemiring
orderOf
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
AddGroupWithOne.toIntCast
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
orderOf_one_add_mul_prime_pow
Nat.prime_two
two_ne_zero
le_rfl
even_iff_two_dvd
Int.not_even_iff_odd
orderOf_one_add_mul_prime πŸ“–mathematicalNat.PrimeorderOf
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toIntCast
β€”pow_one
orderOf_one_add_mul_prime_pow
one_ne_zero
Nat.Prime.two_le
orderOf_one_add_mul_prime_pow πŸ“–mathematicalNat.PrimeorderOf
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toIntCast
β€”Nat.cast_pow
zero_add
natCast_self
MulZeroClass.zero_mul
add_zero
orderOf_one
pow_zero
exists_one_add_mul_pow_prime_pow_eq
dvd_pow_self
pow_succ'
pow_succ
pow_mul
mul_comm
pow_dvd_pow
orderOf_eq_prime_pow
pow_add
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_add
Distrib.leftDistribClass
mul_assoc
add_right_comm
Int.cast_natCast
Int.cast_mul
intCast_zmod_eq_zero_iff_dvd
Nat.cast_mul
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Int.instNontrivial
Nat.Prime.ne_zero
CharP.cast_eq_zero
charP
orderOf_one_add_prime πŸ“–mathematicalNat.PrimeorderOf
ZMod
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toNatCast
β€”Int.cast_one
mul_one
orderOf_one_add_mul_prime
Nat.Prime.ne_one
Int.instCharZero

---

← Back to Index