Documentation Verification Report

ZariskisMainTheorem

πŸ“ Source: Mathlib/RingTheory/ZariskisMainTheorem.lean

Statistics

MetricCount
DefinitionsZariskisMainProperty
1
Theoremsexists_fg_and_exists_notMem_and_awayMap_bijective, of_isOpen_singleton_fiber, of_quasiFiniteAt_residueField, of_weaklyQuasiFiniteAt, exists_fg_and_exists_notMem_and_awayMap_bijective, of_finiteType, of_finiteType_of_weaklyQuasiFiniteAt, of_isIntegral, quasiFiniteAt, restrictScalars, trans, not_isStronglyTranscendental_of_quasiFiniteAt, not_isStronglyTranscendental_of_weaklyQuasiFiniteAt, quasiFiniteAt_iff_isOpen_singleton_fiber, zariskisMainProperty_iff, zariskisMainProperty_iff', zariskisMainProperty_iff_exists_saturation_eq_top, exists_isIntegral_leadingCoeff_pow_smul_sub_of_isIntegralElem_of_mul_mem_range, exists_isIntegral_sub_of_isIntegralElem_of_mul_mem_range, exists_leadingCoeff_pow_smul_mem_conductor, exists_leadingCoeff_pow_smul_mem_radical_conductor, isIntegral_of_isIntegralElem_of_monic_of_natDegree_lt, isStronglyTranscendental_mk_radical_conductor
23
Total24

Algebra

Definitions

NameCategoryTheorems
ZariskisMainProperty πŸ“–MathDef
6 mathmath: zariskisMainProperty_iff, ZariskisMainProperty.of_finiteType_of_weaklyQuasiFiniteAt, ZariskisMainProperty.of_isIntegral, zariskisMainProperty_iff', zariskisMainProperty_iff_exists_saturation_eq_top, ZariskisMainProperty.of_finiteType

Theorems

NameKindAssumesProvesValidatesDepends On
not_isStronglyTranscendental_of_quasiFiniteAt πŸ“–mathematicalβ€”IsStronglyTranscendentalβ€”not_isStronglyTranscendental_of_weaklyQuasiFiniteAt
WeaklyQuasiFiniteAt.instOfQuasiFiniteAt
not_isStronglyTranscendental_of_weaklyQuasiFiniteAt πŸ“–mathematicalβ€”IsStronglyTranscendentalβ€”Function.Injective.isDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
IsScalarTower.subalgebra'
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
subset_adjoin
IsScalarTower.to_smulCommClass
Subalgebra.instIsScalarTowerSubtypeMem
Commute.all
AlgHom.range_eq_top
Subalgebra.map_injective
Subtype.val_injective
map_top
le_antisymm
Set.image_subset_range
Subalgebra.range_val
Set.image_congr
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
one_mul
Localization.isLocalization
IsScalarTower.subalgebra
Subalgebra.instFaithfulSMulSubtypeMem
Module.FaithfullyFlat.faithfulSMul
Module.FaithfullyFlat.instOfNontrivialOfFree
FractionRing.instNontrivial
IsDomain.toNontrivial
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IsDomain.to_noZeroDivisors
instIsDomain
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
IsLocalizedModule.instIsTorsionFreeLocalizationLocalizedModuleOfIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
integralClosure.isIntegralClosure
Ideal.exists_minimalPrimes_le
bot_le
Ideal.instIsTwoSided_1
Ideal.map_isPrime_of_surjective
Ideal.Quotient.mk_surjective
Ideal.mk_ker
WeaklyQuasiFiniteAt.of_surjectiveOnStalks
RingHom.surjectiveOnStalks_of_surjective
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.comap_map_of_surjective
WeaklyQuasiFiniteAt.of_restrictScalars
Ideal.Quotient.isScalarTower_of_liesOver
Ideal.over_under
isReduced_of_noZeroDivisors
Ideal.Quotient.noZeroDivisors
RingHom.Finite.of_comp_finite
Polynomial.ringHom_ext'
RingHom.ext
Polynomial.map_C
Polynomial.aeval_C
Polynomial.map_X
Polynomial.aeval_X
RingHom.Finite.comp
RingHom.Finite.of_surjective
Ideal.Quotient.isDomain
Ideal.Quotient.instFaithfulSMul
IsStronglyTranscendental.of_surjective_left
isStronglyTranscendental_mk_of_mem_minimalPrimes
quasiFiniteAt_iff_isOpen_singleton_fiber πŸ“–mathematicalβ€”QuasiFiniteAt
PrimeSpectrum.asIdeal
CommRing.toCommSemiring
PrimeSpectrum.isPrime
IsOpen
Set.Elem
PrimeSpectrum
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Set
Set.instSingletonSet
instTopologicalSpaceSubtype
Set.instMembership
PrimeSpectrum.zariskiTopology
β€”PrimeSpectrum.isPrime
Homeomorph.isOpen_image
Set.image_singleton
to_smulCommClass
QuasiFiniteAt.baseChange
Homeomorph.symm_apply_apply
IsClopen.isOpen
QuasiFiniteAt.isClopen_singleton
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IsLocalRing.ResidueField.finite_of_module_finite
IsIntegral.isLocalHom
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
Module.FaithfullyFlat.faithfulSMul
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Localization.AtPrime.isLocalRing
Module.Free.self
Module.Finite.self
FiniteType.baseChange
QuasiFiniteAt.of_isOpen_singleton_fiber
zariskisMainProperty_iff πŸ“–mathematicalβ€”ZariskisMainProperty
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsIntegral
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Function.Bijective.eq_1
IsLocalization.map_injective_of_injective
Subtype.val_injective
IsLocalization.Away.instMapRingHomPowersOfCoe
Localization.isLocalization
Localization.awayMap_surjective_iff
zariskisMainProperty_iff' πŸ“–mathematicalβ€”ZariskisMainProperty
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsIntegral
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”zariskisMainProperty_iff
IsIntegral.pow_iff
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
pow_succ
zariskisMainProperty_iff_exists_saturation_eq_top πŸ“–mathematicalβ€”ZariskisMainProperty
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Subalgebra.saturation
integralClosure
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsConcreteLE

Algebra.QuasiFiniteAt

Theorems

NameKindAssumesProvesValidatesDepends On
exists_fg_and_exists_notMem_and_awayMap_bijective πŸ“–mathematicalβ€”Submodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Ideal
SetLike.instMembership
Submodule.setLike
Semiring.toModule
Subalgebra.instSetLike
Function.Bijective
Localization.Away
CommSemiring.toCommMonoid
Subalgebra.toCommSemiring
RingHom
RingHom.instFunLike
AlgHom.toRingHom
Subalgebra.toSemiring
Subalgebra.algebra
Subalgebra.val
OreLocalization.instSemiring
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
Localization.awayMap
β€”Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
Algebra.ZariskisMainProperty.of_finiteType_of_weaklyQuasiFiniteAt
of_isOpen_singleton_fiber πŸ“–mathematicalIsOpen
Set.Elem
PrimeSpectrum
CommRing.toCommSemiring
Set.preimage
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Set
Set.instSingletonSet
instTopologicalSpaceSubtype
Set.instMembership
PrimeSpectrum.zariskiTopology
Algebra.QuasiFiniteAt
PrimeSpectrum.asIdeal
PrimeSpectrum.isPrime
β€”PrimeSpectrum.isPrime
Algebra.to_smulCommClass
of_isOpen_singleton
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IsLocalRing.ResidueField.finite_of_module_finite
Algebra.IsIntegral.isLocalHom
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
Module.FaithfullyFlat.faithfulSMul
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Localization.AtPrime.isLocalRing
Module.Free.self
Module.Finite.self
Algebra.FiniteType.baseChange
Set.image_singleton
Homeomorph.isOpen_image
of_quasiFiniteAt_residueField
PrimeSpectrum.instLiesOverAsIdealComapAlgebraMap
RingHom.instRingHomClass
Homeomorph.symm_apply_apply
of_quasiFiniteAt_residueField πŸ“–mathematicalIdeal.comap
Ideal.Fiber
RingHom
TensorProduct
CommRing.toCommSemiring
Ideal.ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Algebra.toModule
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
Algebra.TensorProduct.instSemiring
RingHom.instFunLike
AlgHom.toRingHom
Algebra.TensorProduct.instAlgebra
Algebra.TensorProduct.includeRight
RingHom.instRingHomClass
Algebra.QuasiFiniteAtβ€”RingHom.instRingHomClass
Algebra.to_smulCommClass
Algebra.WeaklyQuasiFiniteAt.of_quasiFiniteAt_residueField
of_weaklyQuasiFiniteAt
of_weaklyQuasiFiniteAt πŸ“–mathematicalβ€”Algebra.QuasiFiniteAtβ€”Algebra.ZariskisMainProperty.quasiFiniteAt
Algebra.ZariskisMainProperty.of_finiteType_of_weaklyQuasiFiniteAt

Algebra.ZariskisMainProperty

Theorems

NameKindAssumesProvesValidatesDepends On
exists_fg_and_exists_notMem_and_awayMap_bijective πŸ“–mathematicalAlgebra.ZariskisMainPropertySubmodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Ideal
SetLike.instMembership
Submodule.setLike
Semiring.toModule
Subalgebra.instSetLike
Function.Bijective
Localization.Away
CommSemiring.toCommMonoid
Subalgebra.toCommSemiring
RingHom
RingHom.instFunLike
AlgHom.toRingHom
Subalgebra.toSemiring
Subalgebra.algebra
Subalgebra.val
OreLocalization.instSemiring
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
Localization.awayMap
β€”Algebra.FiniteType.out
Algebra.subset_adjoin
fg_adjoin_of_finite
Set.Finite.image
Finset.finite_toSet
IsLocalization.map_injective_of_injective
Subtype.val_injective
IsLocalization.Away.instMapRingHomPowersOfCoe
Localization.isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
Algebra.map_top
Subalgebra.map_le
Algebra.adjoin_le_iff
Set.mem_insert_of_mem
mul_comm
pow_mem
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Function.Surjective.exists
IsLocalization.mk'_surjective
IsLocalization.map_mk'
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsLocalization.eq_iff_exists
IsLocalization.exists_mk'_eq
map_mul
map_pow
Submonoid.instSubmonoidClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsScalarTower.coe_toAlgHom
Localization.mk_eq_mk'
IsLocalization.mk'.congr_simp
one_pow
IsLocalization.smul_mk'_one
Algebra.zariskisMainProperty_iff
of_finiteType πŸ“–mathematicalβ€”Algebra.ZariskisMainPropertyβ€”of_finiteType_of_weaklyQuasiFiniteAt
Algebra.WeaklyQuasiFiniteAt.instOfQuasiFiniteAt
of_finiteType_of_weaklyQuasiFiniteAt πŸ“–mathematicalβ€”Algebra.ZariskisMainPropertyβ€”Algebra.FiniteType.iff_quotient_mvPolynomial''
small_of_surjective
MvPolynomial.instSmall
UnivLE.small
UnivLE.self
univLE_of_max
RingHom.instRingHomClass
Ideal.IsPrime.comap
Algebra.WeaklyQuasiFiniteAt.comap_algEquiv
AlgHom.Finite.of_surjective
AlgEquiv.surjective
Algebra.zariskisMainProperty_iff'
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquiv.apply_symm_apply
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
of_isIntegral πŸ“–mathematicalβ€”Algebra.ZariskisMainPropertyβ€”Algebra.zariskisMainProperty_iff'
Submonoid.one_mem
Algebra.IsIntegral.isIntegral
quasiFiniteAt πŸ“–mathematicalAlgebra.ZariskisMainPropertyAlgebra.QuasiFiniteAtβ€”exists_fg_and_exists_notMem_and_awayMap_bijective
Submodule.fg_top
Algebra.QuasiFinite.trans
OreLocalization.instIsScalarTower
IsScalarTower.right
Algebra.QuasiFinite.instOfFinite
Algebra.QuasiFinite.instLocalization
Module.Finite.self
Algebra.QuasiFinite.of_surjective_algHom
Localization.isLocalization
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsUnit.pow
IsLocalization.map_units
Algebra.QuasiFinite.of_forall_exists_mul_mem_range
IsLocalization.exists_mk'_eq
AlgHom.commutes
restrictScalars πŸ“–β€”Algebra.ZariskisMainPropertyβ€”β€”Algebra.zariskisMainProperty_iff'
isIntegral_trans
trans πŸ“–β€”Algebra.ZariskisMainProperty
Ideal.under
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Subalgebra.saturation
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”β€”Algebra.zariskisMainProperty_iff'
Algebra.zariskisMainProperty_iff
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Ideal.IsPrime.mul_notMem
Ideal.IsPrime.mem_of_pow_mem
Ideal.IsPrime.under
Eq.ge
Set.mem_univ
pow_add
mul_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
IsIntegral.algebraMap
IsIntegral.mul
IsIntegral.pow

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isIntegral_leadingCoeff_pow_smul_sub_of_isIntegralElem_of_mul_mem_range πŸ“–mathematicalRingHom.IsIntegralElem
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
CommRing.toRing
AlgHom.toRingHom
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AlgHom
AlgHom.funLike
IsIntegral
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Algebra.toSMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.leadingCoeff
β€”IsScalarTower.right
IsScalarTower.of_algebraMap_eq
IsLocalization.map_eq
IsScalarTower.algebraMap_apply
OreLocalization.instIsScalarTower
IsLocalization.Away.algebraMap_isUnit
Localization.isLocalization
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.ringHom_ext'
RingHom.ext
Polynomial.aeval_map_algebraMap
AlgHom.commutes
Polynomial.map_X
Polynomial.aeval_X
exists_isIntegral_sub_of_isIntegralElem_of_mul_mem_range
Polynomial.Monic.map
Polynomial.evalβ‚‚_map
Polynomial.hom_evalβ‚‚
AlgHom.toRingHom_eq_coe
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Polynomial.Monic.leadingCoeff
Polynomial.leadingCoeff_C_mul_of_isUnit
Polynomial.leadingCoeff_map_of_leadingCoeff_ne_zero
IsUnit.ne_zero
IsUnit.val_inv_mul
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
Polynomial.aeval_C
Polynomial.aeval_algebraMap_apply
Polynomial.aeval_algHom_apply
Polynomial.aeval_X_left
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_assoc
IsLocalization.integerNormalization_map_to_map
Algebra.smul_def
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
map_sub
RingHomClass.toAddMonoidHomClass
IsIntegral.mul
isIntegral_algebraMap
IsIntegral.exists_multiple_integral_of_isLocalization
IsLocalization.exists_isIntegral_smul_of_isIntegral_map
IsLocalization.Away.instAlgebraMapSubmonoidPowersOfCoeRingHomAlgebraMap
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
exists_isIntegral_sub_of_isIntegralElem_of_mul_mem_range πŸ“–mathematicalRingHom.IsIntegralElem
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
CommRing.toRing
AlgHom.toRingHom
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
Polynomial.Monic
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AlgHom
AlgHom.funLike
IsIntegral
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”eq_or_ne
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
one_mul
sub_self
isIntegral_of_isIntegralElem_of_monic_of_natDegree_lt
RingHom.IsIntegralElem.sub
RingHom.isIntegralElem_map
Polynomial.natDegree_modByMonic_lt
mul_sub
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
Polynomial.modByMonic_add_div
exists_leadingCoeff_pow_smul_mem_conductor πŸ“–mathematicalintegralClosure
Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
conductor
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toSMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.leadingCoeff
β€”IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
Polynomial.adjoin_X
Algebra.map_top
exists_isIntegral_leadingCoeff_pow_smul_sub_of_isIntegralElem_of_mul_mem_range
RingHom.Finite.to_isIntegral
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Eq.le
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.commutes
sub_add_cancel
Module.Finite.fg_top
AlgHom.map_adjoin_singleton
Algebra.smul_mul_assoc
Submodule.span_induction
Finset.le_sup
pow_add
SemigroupAction.mul_smul
Subalgebra.smul_mem
MulZeroClass.mul_zero
smul_zero
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
mul_add
Distrib.leftDistribClass
smul_add
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
mul_smul_comm
Algebra.to_smulCommClass
SMulCommClass.smul_comm
IsScalarTower.to_smulCommClass
Algebra.smul_def
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
AlgHom.mem_range_self
Eq.ge
Set.mem_univ
exists_leadingCoeff_pow_smul_mem_radical_conductor πŸ“–mathematicalintegralClosure
Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.radical
conductor
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toSMul
Polynomial.coeff
β€”exists_leadingCoeff_pow_smul_mem_conductor
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mul_pow
smul_pow
IsScalarTower.right
Algebra.to_smulCommClass
zero_smul
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
pow_add
add_comm
mul_smul_mul_comm
IsScalarTower.left
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
pow_mul
Polynomial.leadingCoeff_pow'
Nat.strong_induction_on
lt_or_ge
Polynomial.coeff_eq_zero_of_natDegree_lt
Nat.instCanonicallyOrderedAdd
eq_or_ne
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.commutes
sub_mul
mul_right_comm
Algebra.smul_def
sub_mem
Submodule.addSubgroupClass
Polynomial.eraseLead_coeff
LE.le.trans_lt
Polynomial.eraseLead_natDegree_le
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Nat.instZeroLEOneClass
isIntegral_of_isIntegralElem_of_monic_of_natDegree_lt πŸ“–mathematicalRingHom.IsIntegralElem
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
CommRing.toRing
AlgHom.toRingHom
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
Polynomial.Monic
Polynomial.natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AlgHom
AlgHom.funLike
IsIntegralβ€”Localization.isLocalization
mul_comm
IsLocalization.Away.mul_invSelf
subsingleton_or_nontrivial
RingHom.codomain_trivial
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
isIntegral_zero
le_integralClosure_iff_isIntegral
Algebra.adjoin_le_iff
Set.singleton_subset_iff
SetLike.mem_coe
mem_integralClosure_iff
Algebra.self_mem_adjoin_singleton
Polynomial.Monic.sub_of_left
Polynomial.Monic.map
Polynomial.degree_lt_degree
lt_imp_lt_of_le_of_le
Polynomial.natDegree_C_mul_le
le_refl
Polynomial.natDegree_map_le
Polynomial.Monic.natDegree_map
Polynomial.evalβ‚‚_sub
Polynomial.aeval_map_algebraMap
IsScalarTower.subalgebra'
IsScalarTower.right
Polynomial.aeval_algebraMap_apply
OreLocalization.instIsScalarTower
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
Polynomial.aeval_X_left
Polynomial.evalβ‚‚_mul
Polynomial.evalβ‚‚_C
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_right_comm
one_mul
sub_self
isIntegral_trans
Subalgebra.isScalarTower_mid
IsScalarTower.left
AlgHomClass.toRingHomClass
AlgHom.toRingHom_eq_coe
Polynomial.evalβ‚‚_map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
Polynomial.hom_evalβ‚‚
Polynomial.ringHom_ext'
RingHom.ext
AlgHom.commutes
Polynomial.aeval_X
IsLocalization.Away.isIntegral_of_isIntegral_map
isIntegral_of_isIntegral_adjoin_of_mul_eq_one
isStronglyTranscendental_mk_radical_conductor πŸ“–mathematicalintegralClosure
Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsStronglyTranscendental
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.radical
conductor
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”Ideal.instIsTwoSided_1
Function.Surjective.forall
Ideal.Quotient.mk_surjective
Polynomial.ext
Polynomial.coeff_mul_C
Polynomial.coeff_map
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Polynomial.aeval_X
Algebra.smul_def
exists_leadingCoeff_pow_smul_mem_radical_conductor
Ideal.Quotient.eq_zero_iff_mem
map_mul
Ideal.Quotient.algebraMap_eq
Polynomial.aeval_algebraMap_apply
Ideal.Quotient.isScalarTower
IsScalarTower.right

---

← Back to Index