Documentation Verification Report

Aleph

πŸ“ Source: Mathlib/SetTheory/Cardinal/Aleph.lean

Statistics

MetricCount
Definitionsaleph, beth, preAleph, preBeth, termβ„΅_, term℡₁, termβ„Ά_, IsInitial, isInitialIso, omega, preOmega, termΟ‰_, termω₁
13
Theoremsaleph0_le_aleph, aleph0_le_beth, aleph0_le_preAleph, aleph0_lt_aleph_one, aleph1_eq_lift, aleph1_le_lift, aleph1_lt_lift, aleph_eq_preAleph, aleph_le_aleph, aleph_le_beth, aleph_limit, aleph_lt_aleph, aleph_max, aleph_one_eq_lift, aleph_one_le_lift, aleph_one_lt_lift, aleph_pos, aleph_succ, aleph_toENat, aleph_toNat, aleph_zero, beth_eq_preBeth, beth_le_beth, beth_limit, beth_lt_beth, beth_mono, beth_ne_zero, beth_pos, beth_strictMono, beth_succ, beth_zero, countable_iff_lt_aleph_one, isNormal_aleph, isNormal_beth, isNormal_preAleph, isNormal_preBeth, isStrongLimit_beth, isStrongLimit_preBeth, isSuccLimit_omega, le_aleph_ord, le_beth_ord, le_preAleph_ord, le_preBeth_ord, lift_aleph, lift_beth, lift_eq_aleph1, lift_eq_aleph_one, lift_le_aleph1, lift_le_aleph_one, lift_lt_aleph1, lift_lt_aleph_one, lift_preAleph, lift_preBeth, lt_omega_iff_card_lt, mem_range_aleph_iff, mk_cardinal, ord_aleph, ord_preAleph, preAleph_le_aleph, preAleph_le_of_isSuccPrelimit, preAleph_le_of_strictMono, preAleph_le_preAleph, preAleph_le_preBeth, preAleph_limit, preAleph_lt_preAleph, preAleph_max, preAleph_nat, preAleph_omega0, preAleph_pos, preAleph_succ, preAleph_zero, preBeth_eq_zero, preBeth_inj, preBeth_le_beth, preBeth_le_preBeth, preBeth_limit, preBeth_lt_preBeth, preBeth_mono, preBeth_nat, preBeth_omega, preBeth_one, preBeth_pos, preBeth_strictMono, preBeth_succ, preBeth_zero, range_aleph, succ_aleph0, type_cardinal, card_le_card, card_lt_card, mem_range_preOmega, ord_card, card_le_aleph, card_le_beth, card_le_preAleph, card_le_preBeth, card_omega, card_preOmega, coe_preOmega, isInitialIso_apply, isInitialIso_symm_apply_coe, isInitial_natCast, isInitial_omega, isInitial_omega0, isInitial_one, isInitial_ord, isInitial_preOmega, isInitial_succ, isInitial_zero, isNormal_omega, isNormal_preOmega, le_omega_self, le_preOmega_self, lift_omega, lift_preOmega, mem_range_omega_iff, mem_range_preOmega_iff, not_bddAbove_isInitial, omega0_le_omega, omega0_le_preOmega_iff, omega0_lt_omega1, omega0_lt_omega_one, omega0_lt_preOmega_iff, omega_eq_preOmega, omega_le_omega, omega_lt_omega, omega_max, omega_pos, omega_strictMono, omega_zero, preOmega_le_of_forall_lt, preOmega_le_omega, preOmega_le_preOmega, preOmega_lt_preOmega, preOmega_max, preOmega_natCast, preOmega_ofNat, preOmega_omega0, preOmega_strictMono, preOmega_zero, range_omega, range_preOmega
142
Total155

Cardinal

Definitions

NameCategoryTheorems
aleph πŸ“–CompOp
46 mathmath: aleph_le_beth, aleph_succ, aleph_pos, lift_eq_aleph_one, Ordinal.card_le_aleph, preAleph_le_aleph, aleph_one_le_continuum, aleph_mul_aleph0, aleph_add_aleph, lt_omega_iff_card_lt, aleph1_le_lift, le_aleph_ord, cardinalInterFilter_aleph_one_iff, aleph_le_aleph, ord_aleph, isRegular_aleph_succ, aleph1_lt_lift, isNormal_aleph, lift_eq_aleph1, aleph_max, range_aleph, aleph_one_le_lift, lift_le_aleph1, Ordinal.card_omega, lift_aleph, aleph0_le_aleph, aleph0_lt_aleph_one, aleph_mul_aleph, isRegular_aleph_one, lift_le_aleph_one, aleph1_eq_lift, aleph_eq_preAleph, CountableInterFilter.toCardinalInterFilter, aleph_one_eq_lift, aleph_toENat, countable_iff_lt_aleph_one, aleph_limit, aleph0_mul_aleph, lift_lt_aleph1, aleph_one_lt_lift, mem_range_aleph_iff, aleph_lt_aleph, aleph_toNat, succ_aleph0, aleph_zero, lift_lt_aleph_one
beth πŸ“–CompOp
18 mathmath: aleph_le_beth, le_beth_ord, aleph0_le_beth, beth_succ, beth_one, beth_le_beth, beth_zero, beth_mono, preBeth_le_beth, isStrongLimit_beth, beth_pos, beth_limit, Ordinal.card_le_beth, beth_strictMono, beth_eq_preBeth, lift_beth, beth_lt_beth, isNormal_beth
preAleph πŸ“–CompOp
22 mathmath: isNormal_preAleph, preAleph_nat, preAleph_le_aleph, Ordinal.card_le_preAleph, preAleph_omega0, le_preAleph_ord, preAleph_limit, ord_preAleph, preAleph_max, preAleph_le_of_isSuccPrelimit, aleph0_le_preAleph, preAleph_succ, preAleph_zero, preAleph_le_preAleph, preAleph_lt_preAleph, Ordinal.card_preOmega, preAleph_le_of_strictMono, preAleph_le_preBeth, preAleph_pos, aleph_eq_preAleph, lift_preAleph, isRegular_preAleph_succ
preBeth πŸ“–CompOp
22 mathmath: preBeth_omega, isStrongLimit_preBeth, preBeth_eq_zero, preBeth_one, preBeth_inj, lift_preBeth, Ordinal.card_le_preBeth, preBeth_zero, preBeth_le_beth, preBeth_lt_preBeth, preBeth_le_preBeth, le_preBeth_ord, preBeth_succ, preBeth_limit, beth_eq_preBeth, preAleph_le_preBeth, preBeth_strictMono, preBeth_mono, isNormal_preBeth, preBeth_pos, preBeth_nat, ZFSet.card_vonNeumann
termβ„΅_ πŸ“–CompOpβ€”
term℡₁ πŸ“–CompOpβ€”
termβ„Ά_ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_le_aleph πŸ“–mathematicalβ€”Cardinal
instLE
aleph0
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
β€”aleph_eq_preAleph
aleph0_le_preAleph
le_self_add
Ordinal.canonicallyOrderedAdd
aleph0_le_beth πŸ“–mathematicalβ€”Cardinal
instLE
aleph0
beth
β€”LE.le.trans
aleph0_le_aleph
aleph_le_beth
aleph0_le_preAleph πŸ“–mathematicalβ€”Cardinal
instLE
aleph0
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderIso
preAleph
Ordinal.omega0
β€”preAleph_omega0
preAleph_le_preAleph
aleph0_lt_aleph_one πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”succ_aleph0
Order.lt_succ
instNoMaxOrder
aleph1_eq_lift πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
lift
β€”aleph_one_eq_lift
aleph1_le_lift πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
Ordinal.one
lift
β€”aleph_one_le_lift
aleph1_lt_lift πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
lift
β€”aleph_one_lt_lift
aleph_eq_preAleph πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
OrderIso
instFunLikeOrderIso
preAleph
Ordinal.add
Ordinal.omega0
β€”β€”
aleph_le_aleph πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
β€”OrderEmbedding.le_iff_le
aleph_le_beth πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
beth
β€”preAleph_le_preBeth
Ordinal.instAddLeftStrictMono
aleph_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
OrderEmbedding
Cardinal
Preorder.toLE
instLE
instFunLikeOrderEmbedding
aleph
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
β€”Order.IsNormal.apply_of_isSuccLimit
isNormal_aleph
aleph_lt_aleph πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
β€”OrderEmbedding.lt_iff_lt
aleph_max πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
instConditionallyCompleteLinearOrderBot
β€”Monotone.map_max
OrderEmbedding.monotone
aleph_one_eq_lift πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
lift
β€”lift_aleph
Ordinal.lift_one
aleph_one_le_lift πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
Ordinal.one
lift
β€”lift_aleph
Ordinal.lift_one
lift_le
aleph_one_lt_lift πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
lift
β€”lift_aleph
Ordinal.lift_one
lift_lt
aleph_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
β€”LT.lt.trans_le
aleph0_pos
aleph0_le_aleph
aleph_succ πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Order.succ
Ordinal.instSuccOrder
partialOrder
instSuccOrder
β€”aleph_eq_preAleph
Ordinal.add_succ
preAleph_succ
aleph_toENat πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
PartialOrder.toPreorder
partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
toENat
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Top.top
instTopENat
β€”toENat_eq_top
aleph0_le_aleph
aleph_toNat πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Cardinal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
toNat
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
β€”toNat_apply_of_aleph0_le
aleph0_le_aleph
aleph_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.zero
aleph0
β€”aleph_eq_preAleph
add_zero
preAleph_omega0
beth_eq_preBeth πŸ“–mathematicalβ€”beth
preBeth
Ordinal
Ordinal.add
Ordinal.omega0
β€”β€”
beth_le_beth πŸ“–mathematicalβ€”Cardinal
instLE
beth
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.le_iff_le
beth_strictMono
beth_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
beth
iSup
Cardinal
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
β€”Order.IsNormal.apply_of_isSuccLimit
isNormal_beth
beth_lt_beth πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
beth
Ordinal
Ordinal.partialOrder
β€”StrictMono.lt_iff_lt
beth_strictMono
beth_mono πŸ“–mathematicalβ€”Monotone
Ordinal
Cardinal
PartialOrder.toPreorder
Ordinal.partialOrder
partialOrder
beth
β€”StrictMono.monotone
beth_strictMono
beth_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
beth_pos
beth_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
beth
β€”LT.lt.trans_le
aleph0_pos
aleph0_le_beth
beth_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
Cardinal
PartialOrder.toPreorder
Ordinal.partialOrder
partialOrder
beth
β€”StrictMono.comp
preBeth_strictMono
add_lt_add_right
Ordinal.instAddLeftStrictMono
beth_succ πŸ“–mathematicalβ€”beth
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Cardinal
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Ordinal.add_succ
preBeth_succ
beth_zero πŸ“–mathematicalβ€”beth
Ordinal
Ordinal.zero
aleph0
β€”add_zero
preBeth_omega
countable_iff_lt_aleph_one πŸ“–mathematicalβ€”Set.Countable
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”succ_aleph0
Order.lt_succ_iff
instNoMaxOrder
le_aleph0_iff_set_countable
isNormal_aleph πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
Cardinal
Ordinal.instLinearOrder
linearOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
β€”Order.IsNormal.comp
Ordinal.instAddLeftStrictMono
isNormal_preAleph
Ordinal.isNormal_add_right
isNormal_beth πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
Cardinal
Ordinal.instLinearOrder
linearOrder
beth
β€”Order.IsNormal.comp
isNormal_preBeth
Ordinal.isNormal_add_right
isNormal_preAleph πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
Cardinal
Ordinal.instLinearOrder
linearOrder
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
β€”OrderIso.isNormal
isNormal_preBeth πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
Cardinal
Ordinal.instLinearOrder
linearOrder
preBeth
β€”Order.isNormal_iff
preBeth_strictMono
preBeth_limit
Order.IsSuccLimit.isSuccPrelimit
ciSup_le_iff'
bddAbove_of_small
small_range
Ordinal.small_Iio
isStrongLimit_beth πŸ“–mathematicalβ€”IsStrongLimit
beth
Order.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
β€”beth_eq_preBeth
isStrongLimit_preBeth
Ordinal.isSuccLimit_add_iff_of_isSuccLimit
Ordinal.isSuccLimit_omega0
isStrongLimit_preBeth πŸ“–mathematicalβ€”IsStrongLimit
preBeth
Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
β€”bot_eq_zero'
Ordinal.canonicallyOrderedAdd
Order.IsSuccLimit.ne_bot
Nat.instAtLeastTwoHAddOfNat
exists_lt_of_lt_ciSup'
preBeth_limit
Order.IsSuccLimit.isSuccPrelimit
power_le_power_left
two_ne_zero
ZeroLEOneClass.neZero.two
IsOrderedRing.toZeroLEOneClass
isOrderedRing
NeZero.charZero_one
instCharZero
addLeftMono
LT.lt.le
LE.le.trans_lt
preBeth_succ
preBeth_strictMono
Order.IsSuccLimit.succ_lt
Order.not_isSuccPrelimit_iff'
Ordinal.instNoMaxOrder
Order.not_isSuccLimit_iff
IsMin.eq_bot
preBeth_zero
IsStrongLimit.two_power_lt
Order.lt_succ
isSuccLimit_omega πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Ordinal.omega
β€”ord_aleph
isSuccLimit_ord
aleph0_le_aleph
le_aleph_ord πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
ord
β€”card_ord
Ordinal.card_le_aleph
le_beth_ord πŸ“–mathematicalβ€”Cardinal
instLE
beth
ord
β€”card_ord
Ordinal.card_le_beth
le_preAleph_ord πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderIso
preAleph
ord
β€”card_ord
Ordinal.card_le_preAleph
le_preBeth_ord πŸ“–mathematicalβ€”Cardinal
instLE
preBeth
ord
β€”card_ord
Ordinal.card_le_preBeth
lift_aleph πŸ“–mathematicalβ€”lift
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.lift
β€”lift_preAleph
Ordinal.lift_add
Ordinal.lift_omega0
lift_beth πŸ“–mathematicalβ€”lift
beth
Ordinal.lift
β€”beth_eq_preBeth
lift_preBeth
Ordinal.lift_add
Ordinal.lift_omega0
lift_eq_aleph1 πŸ“–mathematicalβ€”lift
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”lift_eq_aleph_one
lift_eq_aleph_one πŸ“–mathematicalβ€”lift
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”lift_aleph
Ordinal.lift_one
lift_le_aleph1 πŸ“–mathematicalβ€”Cardinal
instLE
lift
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”lift_le_aleph_one
lift_le_aleph_one πŸ“–mathematicalβ€”Cardinal
instLE
lift
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”lift_aleph
Ordinal.lift_one
lift_le
lift_lt_aleph1 πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”lift_lt_aleph_one
lift_lt_aleph_one πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”lift_aleph
Ordinal.lift_one
lift_lt
lift_preAleph πŸ“–mathematicalβ€”lift
DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
Ordinal.lift
β€”InitialSeg.eq
isWellOrder_lt
instWellFoundedLT
lift_preBeth πŸ“–mathematicalβ€”lift
preBeth
Ordinal.lift
β€”Ordinal.wellFoundedLT
Nat.instAtLeastTwoHAddOfNat
preBeth_succ
lift_power
lift_ofNat
Ordinal.lift_succ
preBeth_limit
Ordinal.isSuccPrelimit_lift
lift_iSup
bddAbove_of_small
small_range
Ordinal.small_Iio
Set.ext
Ordinal.mem_range_lift_of_le
LT.lt.le
Ordinal.lift_lt
Set.mem_Iio
lt_omega_iff_card_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Ordinal.omega
Cardinal
partialOrder
Ordinal.card
instLE
aleph
β€”Ordinal.IsInitial.card_lt_card
Ordinal.isInitial_omega
Ordinal.card_omega
mem_range_aleph_iff πŸ“–mathematicalβ€”Cardinal
Set
Set.instMembership
Set.range
Ordinal
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
aleph0
β€”range_aleph
Set.mem_Ici
mk_cardinal πŸ“–mathematicalβ€”Cardinal
univ
β€”isWellOrder_lt
instWellFoundedLT
type_cardinal
ord_aleph πŸ“–mathematicalβ€”ord
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.omega
β€”ord_preAleph
Ordinal.instAddLeftStrictMono
ord_preAleph πŸ“–mathematicalβ€”ord
DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
OrderEmbedding
instFunLikeOrderEmbedding
Ordinal.preOmega
β€”Ordinal.card_preOmega
Ordinal.IsInitial.ord_card
Ordinal.isInitial_preOmega
preAleph_le_aleph πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderIso
preAleph
OrderEmbedding
instFunLikeOrderEmbedding
aleph
β€”Ordinal.instAddLeftStrictMono
preAleph_le_preAleph
le_add_self
Ordinal.canonicallyOrderedAdd
preAleph_le_of_isSuccPrelimit πŸ“–mathematicalOrder.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Cardinal
instLE
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
preAleph
β€”eq_or_ne
preAleph_zero
canonicallyOrderedAdd
Ordinal.canonicallyOrderedAdd
instIsEmptyFalse
Order.IsNormal.le_iff_forall_le
isNormal_preAleph
bot_eq_zero'
preAleph_le_of_strictMono πŸ“–mathematicalStrictMono
Ordinal
Cardinal
PartialOrder.toPreorder
Ordinal.partialOrder
partialOrder
instLE
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
preAleph
β€”OrderIso.symm_apply_apply
StrictMono.id_le
instWellFoundedLT
StrictMono.comp
OrderIso.strictMono
preAleph_le_preAleph πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderIso
preAleph
β€”OrderIso.le_iff_le
preAleph_le_preBeth πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderIso
preAleph
preBeth
β€”preAleph_le_of_strictMono
preBeth_strictMono
preAleph_limit πŸ“–mathematicalOrder.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
OrderIso
Cardinal
Preorder.toLE
instLE
instFunLikeOrderIso
preAleph
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
β€”eq_or_ne
preAleph_zero
ciSup_of_empty
Ordinal.instIsEmptyIioZero
bot_eq_zero'
canonicallyOrderedAdd
Order.IsNormal.apply_of_isSuccLimit
isNormal_preAleph
Ordinal.canonicallyOrderedAdd
preAleph_lt_preAleph πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
β€”OrderIso.lt_iff_lt
preAleph_max πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
instConditionallyCompleteLinearOrderBot
β€”Monotone.map_max
OrderIso.monotone
preAleph_nat πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
instNatCast
β€”Ordinal.card_preOmega
Ordinal.preOmega_natCast
Ordinal.card_nat
preAleph_omega0 πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
Ordinal.omega0
aleph0
β€”Ordinal.card_preOmega
Ordinal.preOmega_omega0
Ordinal.card_omega0
preAleph_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
Ordinal.zero
β€”preAleph_zero
preAleph_lt_preAleph
preAleph_succ πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
Order.succ
Ordinal.instSuccOrder
partialOrder
instSuccOrder
β€”OrderIso.map_succ
preAleph_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderIso
preAleph
Ordinal.zero
instZero
β€”OrderIso.map_bot
preBeth_eq_zero πŸ“–mathematicalβ€”preBeth
Cardinal
instZero
Ordinal
Ordinal.zero
β€”preBeth_zero
preBeth_inj πŸ“–mathematicalβ€”preBethβ€”StrictMono.injective
preBeth_strictMono
preBeth_le_beth πŸ“–mathematicalβ€”Cardinal
instLE
preBeth
beth
β€”preBeth_le_preBeth
le_add_self
Ordinal.canonicallyOrderedAdd
preBeth_le_preBeth πŸ“–mathematicalβ€”Cardinal
instLE
preBeth
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.le_iff_le
preBeth_strictMono
preBeth_limit πŸ“–mathematicalOrder.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
preBeth
iSup
Cardinal
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
β€”preBeth.eq_1
LE.le.antisymm'
Nat.instAtLeastTwoHAddOfNat
ciSup_mono
bddAbove_of_small
small_range
Ordinal.small_Iio
LT.lt.le
cantor
ciSup_le_iff'
preBeth_succ
le_ciSup
Order.IsSuccPrelimit.succ_lt
preBeth_lt_preBeth πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
preBeth
Ordinal
Ordinal.partialOrder
β€”StrictMono.lt_iff_lt
preBeth_strictMono
preBeth_mono πŸ“–mathematicalβ€”Monotone
Ordinal
Cardinal
PartialOrder.toPreorder
Ordinal.partialOrder
partialOrder
preBeth
β€”StrictMono.monotone
preBeth_strictMono
preBeth_nat πŸ“–mathematicalβ€”preBeth
Ordinal
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
Cardinal
instNatCast
Nat.iterate
Monoid.toNatPow
Nat.instMonoid
β€”Nat.cast_zero
preBeth_zero
Ordinal.natCast_succ
Nat.instAtLeastTwoHAddOfNat
preBeth_succ
Function.iterate_succ_apply'
Nat.cast_pow
preBeth_omega πŸ“–mathematicalβ€”preBeth
Ordinal.omega0
aleph0
β€”le_antisymm
preBeth_limit
Order.IsSuccLimit.isSuccPrelimit
Ordinal.isSuccLimit_omega0
ciSup_le_iff'
bddAbove_of_small
small_range
Ordinal.small_Iio
Ordinal.lt_omega0
preBeth_nat
natCast_le_aleph0
preAleph_omega0
preAleph_le_preBeth
preBeth_one πŸ“–mathematicalβ€”preBeth
Ordinal
Ordinal.one
Cardinal
instOne
β€”Nat.cast_one
Function.iterate_one
pow_zero
preBeth_nat
preBeth_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
preBeth
Ordinal
Ordinal.partialOrder
Ordinal.zero
β€”preBeth_zero
preBeth_lt_preBeth
preBeth_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
Cardinal
PartialOrder.toPreorder
Ordinal.partialOrder
partialOrder
preBeth
β€”preBeth.eq_1
lt_ciSup_iff'
bddAbove_of_small
small_range
Ordinal.small_Iio
cantor
preBeth_succ πŸ“–mathematicalβ€”preBeth
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Cardinal
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
preBeth.eq_1
Order.Iio_succ
Ordinal.instNoMaxOrder
ciSup_Iic
power_le_power_left
two_ne_zero
ZeroLEOneClass.neZero.two
IsOrderedRing.toZeroLEOneClass
isOrderedRing
NeZero.charZero_one
instCharZero
addLeftMono
preBeth_mono
preBeth_zero πŸ“–mathematicalβ€”preBeth
Ordinal
Ordinal.zero
Cardinal
instZero
β€”preBeth.eq_1
ciSup_of_empty
Ordinal.instIsEmptyIioZero
bot_eq_zero'
canonicallyOrderedAdd
range_aleph πŸ“–mathematicalβ€”Set.range
Cardinal
Ordinal
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Set.Ici
partialOrder
aleph0
β€”Set.ext
aleph0_le_aleph
aleph_eq_preAleph
Ordinal.add_sub_cancel_of_le
aleph0_le_preAleph
OrderIso.apply_symm_apply
succ_aleph0 πŸ“–mathematicalβ€”Order.succ
Cardinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
aleph0
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”aleph_zero
aleph_succ
Ordinal.succ_zero
type_cardinal πŸ“–mathematicalβ€”Ordinal.type
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
IsWellOrder
isWellOrder_lt
linearOrder
instWellFoundedLT
Ordinal.univ
β€”isWellOrder_lt
instWellFoundedLT
Ordinal.wellFoundedLT
Ordinal.univ_id

Ordinal

Definitions

NameCategoryTheorems
IsInitial πŸ“–MathDef
16 mathmath: isInitialIso_apply, isInitialIso_symm_apply_coe, isInitial_preOmega, range_omega, not_bddAbove_isInitial, isInitial_ord, mem_range_omega_iff, isInitial_one, isInitial_omega0, isInitial_succ, coe_preOmega, isInitial_zero, isInitial_omega, isInitial_natCast, mem_range_preOmega_iff, range_preOmega
isInitialIso πŸ“–CompOp
2 mathmath: isInitialIso_apply, isInitialIso_symm_apply_coe
omega πŸ“–CompOp
29 mathmath: principal_add_omega, omega_lt_omega, omega0_lt_omega_one, omega_zero, omega_le_omega, range_omega, mem_range_omega_iff, Cardinal.lt_omega_iff_card_lt, Cardinal.ord_aleph, preOmega_le_omega, principal_mul_omega, omega0_lt_omega1, omega0_le_omega, isInitial_omega, Cardinal.IsRegular.cof_omega_eq, card_omega, omega_strictMono, principal_opow_omega, MeasurableSpace.generateMeasurableRec_omega_one, omega_max, omega_pos, MeasurableSpace.generateMeasurableRec_omega1, lift_omega, Cardinal.isSuccLimit_omega, cof_omega, le_omega_self, omega_eq_preOmega, isNormal_omega, MeasurableSpace.generateMeasurable_eq_rec
preOmega πŸ“–CompOp
23 mathmath: omega0_lt_preOmega_iff, isInitial_preOmega, cof_preOmega, isNormal_preOmega, preOmega_ofNat, preOmega_le_omega, Cardinal.ord_preAleph, preOmega_zero, coe_preOmega, le_preOmega_self, omega0_le_preOmega_iff, lift_preOmega, preOmega_strictMono, card_preOmega, mem_range_preOmega_iff, preOmega_le_preOmega, preOmega_omega0, preOmega_lt_preOmega, preOmega_natCast, IsInitial.mem_range_preOmega, range_preOmega, preOmega_max, omega_eq_preOmega
termΟ‰_ πŸ“–CompOpβ€”
termω₁ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_aleph πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
card
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
Cardinal.aleph
β€”LE.le.trans
card_le_preAleph
Cardinal.preAleph_le_aleph
card_le_beth πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
card
Cardinal.beth
β€”LE.le.trans
card_le_aleph
Cardinal.aleph_le_beth
card_le_preAleph πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
card
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderIso
Cardinal.preAleph
β€”Eq.trans_ge
card_preOmega
card_le_card
not_bddAbove_isInitial
le_preOmega_self
card_le_preBeth πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
card
Cardinal.preBeth
β€”LE.le.trans
card_le_preAleph
Cardinal.preAleph_le_preBeth
card_omega πŸ“–mathematicalβ€”card
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
Cardinal
Cardinal.instLE
Cardinal.aleph
β€”β€”
card_preOmega πŸ“–mathematicalβ€”card
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
OrderIso
Cardinal
Cardinal.instLE
instFunLikeOrderIso
Cardinal.preAleph
β€”β€”
coe_preOmega πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
enumOrd
setOf
IsInitial
β€”β€”
isInitialIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Ordinal
IsInitial
Cardinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Cardinal.instLE
RelIso.instFunLike
isInitialIso
card
β€”β€”
isInitialIso_symm_apply_coe πŸ“–mathematicalβ€”Ordinal
IsInitial
DFunLike.coe
RelIso
Cardinal
Cardinal.instLE
Preorder.toLE
PartialOrder.toPreorder
partialOrder
RelIso.instFunLike
RelIso.symm
isInitialIso
Cardinal.ord
β€”β€”
isInitial_natCast πŸ“–mathematicalβ€”IsInitial
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”IsInitial.eq_1
card_nat
Cardinal.ord_nat
isInitial_omega πŸ“–mathematicalβ€”IsInitial
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
β€”isInitial_preOmega
instAddLeftStrictMono
isInitial_omega0 πŸ“–mathematicalβ€”IsInitial
omega0
β€”IsInitial.eq_1
card_omega0
Cardinal.ord_aleph0
isInitial_one πŸ“–mathematicalβ€”IsInitial
Ordinal
one
β€”Nat.cast_one
isInitial_natCast
isInitial_ord πŸ“–mathematicalβ€”IsInitial
Cardinal.ord
β€”IsInitial.eq_1
Cardinal.card_ord
isInitial_preOmega πŸ“–mathematicalβ€”IsInitial
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
β€”enumOrd_mem
not_bddAbove_isInitial
isInitial_succ πŸ“–mathematicalβ€”IsInitial
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
Preorder.toLT
omega0
β€”Function.mtr
ne_of_lt
card_succ
Cardinal.add_one_of_aleph0_le
instNoMaxOrder
isInitial_natCast
lt_omega0
isInitial_zero πŸ“–mathematicalβ€”IsInitial
Ordinal
zero
β€”Nat.cast_zero
isInitial_natCast
isNormal_omega πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
instLinearOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
β€”Order.IsNormal.comp
instAddLeftStrictMono
isNormal_preOmega
isNormal_add_right
isNormal_preOmega πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
instLinearOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
β€”Order.isNormal_iff
preOmega_strictMono
LE.le.trans
preOmega_le_of_forall_lt
isInitial_ord
IsInitial.card_lt_card
Cardinal.card_ord
lt_of_lt_of_le
isInitial_preOmega
preOmega_lt_preOmega
Order.lt_succ
instNoMaxOrder
card_le_card
Order.IsSuccLimit.succ_lt
Cardinal.ord_card_le
le_omega_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
omega
β€”StrictMono.le_apply
wellFoundedLT
omega_strictMono
le_preOmega_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
preOmega
β€”StrictMono.le_apply
wellFoundedLT
preOmega_strictMono
lift_omega πŸ“–mathematicalβ€”lift
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
β€”lift_preOmega
lift_add
lift_omega0
lift_preOmega πŸ“–mathematicalβ€”lift
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
β€”Cardinal.ord_preAleph
Cardinal.lift_ord
Cardinal.lift_preAleph
mem_range_omega_iff πŸ“–mathematicalβ€”Ordinal
Set
Set.instMembership
Set.range
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
omega0
IsInitial
β€”range_omega
Set.mem_setOf
mem_range_preOmega_iff πŸ“–mathematicalβ€”Ordinal
Set
Set.instMembership
Set.range
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
IsInitial
β€”range_preOmega
Set.mem_setOf
not_bddAbove_isInitial πŸ“–mathematicalβ€”BddAbove
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
setOf
IsInitial
β€”isInitial_ord
LT.lt.not_ge
Order.lt_succ
Cardinal.instNoMaxOrder
Cardinal.ord_le
omega0_le_omega πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
omega
β€”omega_zero
omega_le_omega
zero_le
canonicallyOrderedAdd
omega0_le_preOmega_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
preOmega
β€”preOmega_omega0
preOmega_le_preOmega
omega0_lt_omega1 πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
omega
one
β€”omega0_lt_omega_one
omega0_lt_omega_one πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
omega
one
β€”omega_zero
omega_lt_omega
zero_lt_one
instZeroLEOneClass
instNeZeroOne
omega0_lt_preOmega_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
preOmega
β€”preOmega_omega0
preOmega_lt_preOmega
omega_eq_preOmega πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
preOmega
add
omega0
β€”β€”
omega_le_omega πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
omega
β€”OrderEmbedding.le_iff_le
omega_lt_omega πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
omega
β€”OrderEmbedding.lt_iff_lt
omega_max πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Monotone.map_max
OrderEmbedding.monotone
omega_pos πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
omega
β€”LT.lt.trans_le
omega0_pos
omega0_le_omega
omega_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
omega
β€”OrderEmbedding.strictMono
omega_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
zero
omega0
β€”omega_eq_preOmega
add_zero
preOmega_omega0
preOmega_le_of_forall_lt πŸ“–β€”IsInitial
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
preOmega
β€”β€”enumOrd_le_of_forall_lt
preOmega_le_omega πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
preOmega
omega
β€”instAddLeftStrictMono
preOmega_le_preOmega
le_add_self
canonicallyOrderedAdd
preOmega_le_preOmega πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
preOmega
β€”OrderEmbedding.le_iff_le
preOmega_lt_preOmega πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
preOmega
β€”OrderEmbedding.lt_iff_lt
preOmega_max πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Monotone.map_max
OrderEmbedding.monotone
preOmega_natCast πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”preOmega_zero
LE.le.antisymm'
le_preOmega_self
enumOrd_succ_le
not_bddAbove_isInitial
isInitial_natCast
Eq.trans_lt
Nat.cast_lt
instAddLeftMono
instZeroLEOneClass
instCharZero
Order.lt_succ
Nat.instNoMaxOrder
preOmega_ofNat πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”preOmega_natCast
preOmega_omega0 πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
omega0
β€”apply_omega0_of_isNormal
isNormal_preOmega
preOmega_natCast
iSup_natCast
preOmega_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
preOmega
β€”OrderEmbedding.strictMono
preOmega_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
zero
β€”coe_preOmega
enumOrd_zero
csInf_eq_bot_of_bot_mem
isInitial_zero
range_omega πŸ“–mathematicalβ€”Set.range
Ordinal
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
setOf
omega0
IsInitial
β€”Set.ext
omega0_le_omega
isInitial_omega
IsInitial.mem_range_preOmega
omega_eq_preOmega
add_sub_cancel_of_le
omega0_le_preOmega_iff
range_preOmega πŸ“–mathematicalβ€”Set.range
Ordinal
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
preOmega
setOf
IsInitial
β€”range_enumOrd
not_bddAbove_isInitial

Ordinal.IsInitial

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_card πŸ“–mathematicalOrdinal.IsInitialCardinal
Cardinal.instLE
Ordinal.card
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”LE.le.trans
ord_card
Cardinal.ord_le_ord
Cardinal.ord_card_le
Ordinal.card_le_card
card_lt_card πŸ“–mathematicalOrdinal.IsInitialCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Ordinal.card
Ordinal
Ordinal.partialOrder
β€”lt_iff_lt_of_le_iff_le
card_le_card
mem_range_preOmega πŸ“–mathematicalOrdinal.IsInitialOrdinal
Set
Set.instMembership
Set.range
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
Ordinal.preOmega
β€”Ordinal.mem_range_preOmega_iff
ord_card πŸ“–mathematicalOrdinal.IsInitialCardinal.ord
Ordinal.card
β€”β€”

---

← Back to Index