Documentation Verification Report

Arithmetic

πŸ“ Source: Mathlib/SetTheory/Cardinal/Arithmetic.lean

Statistics

MetricCount
Definitions0
Theoremsadd_ciSup, add_eq_left, add_eq_left_iff, add_eq_max, add_eq_max', add_eq_right, add_eq_right_iff, add_eq_self, add_le_add_iff_of_lt_aleph0, add_le_max, add_le_of_le, add_lt_add, add_lt_add_iff_of_left_lt_aleph0, add_lt_add_iff_of_right_lt_aleph0, add_lt_of_lt, add_mk_eq_max, add_mk_eq_max', add_mk_eq_self, add_nat_eq, add_nat_inj, add_nat_le_add_nat_iff, add_one_eq, add_one_inj, add_one_le_add_one_iff, add_right_inj_of_lt_aleph0, aleph0_mul_aleph, aleph0_mul_eq, aleph0_mul_mk_eq, aleph_add_aleph, aleph_mul_aleph, aleph_mul_aleph0, ciSup_add, ciSup_add_ciSup, ciSup_mul, ciSup_mul_ciSup, eq_of_add_eq_add_left, eq_of_add_eq_add_right, eq_of_add_eq_of_aleph0_le, extend_function, extend_function_finite, extend_function_of_lt, le_mul_left, le_mul_right, mk_add_one_eq, mk_arrow_eq_zero_iff, mk_bounded_set_le, mk_bounded_set_le_of_infinite, mk_bounded_subset_le, mk_compl_eq_mk_compl_finite, mk_compl_eq_mk_compl_finite_lift, mk_compl_eq_mk_compl_finite_same, mk_compl_eq_mk_compl_infinite, mk_compl_finset_of_infinite, mk_compl_of_infinite, mk_embedding_eq_arrow_of_le, mk_embedding_eq_arrow_of_lift_le, mk_embedding_eq_zero_iff_lift_lt, mk_embedding_eq_zero_iff_lt, mk_embedding_le_arrow, mk_equiv_comm, mk_equiv_eq_arrow_of_eq, mk_equiv_eq_arrow_of_lift_eq, mk_equiv_eq_zero_iff_lift_ne, mk_equiv_eq_zero_iff_ne, mk_equiv_le_embedding, mk_equiv_of_eq, mk_equiv_of_lift_eq, mk_finset_of_infinite, mk_list_eq_aleph0, mk_list_eq_max, mk_list_eq_max_mk_aleph0, mk_list_eq_mk, mk_list_le_max, mk_mul_aleph0_eq, mk_perm_eq_self_power, mk_perm_eq_two_power, mk_surjective_eq_arrow_of_le, mk_surjective_eq_arrow_of_lift_le, mk_surjective_eq_zero_iff, mk_surjective_eq_zero_iff_lift, mul_aleph0_eq, mul_ciSup, mul_eq_left, mul_eq_left_iff, mul_eq_max, mul_eq_max', mul_eq_max_of_aleph0_le_left, mul_eq_max_of_aleph0_le_right, mul_eq_right, mul_eq_self, mul_le_max, mul_le_max_of_aleph0_le_left, mul_le_max_of_aleph0_le_right, mul_lt_of_lt, mul_mk_eq_max, mul_natCast_inj, mul_natCast_le_mul_natCast, mul_natCast_lt_mul_natCast, mul_natCast_strictMono, natCast_mul_inj, natCast_mul_le_natCast_mul, natCast_mul_lt_natCast_mul, natCast_mul_strictMono, nat_add_eq, nat_power_eq, pow_eq, pow_le, power_eq_two_power, power_le_aleph0, power_nat_eq, power_nat_le, power_nat_le_max, power_self_eq, powerlt_aleph0, powerlt_aleph0_le, prod_eq_two_power, sum_eq_iSup, sum_eq_iSup_lift, sum_eq_iSup_of_lift_mk_le_iSup, sum_eq_iSup_of_mk_le_iSup, sum_eq_lift_iSup_of_lift_mk_le_lift_iSup, sum_pow_eq_max_aleph0, sum_pow_le_max_aleph0
123
Total123

Cardinal

Theorems

NameKindAssumesProvesValidatesDepends On
add_ciSup πŸ“–mathematicalBddAbove
Cardinal
instLE
Set.range
instAdd
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”add_comm
ciSup_add
add_eq_left πŸ“–mathematicalCardinal
instLE
aleph0
instAddβ€”add_eq_max
max_eq_left
add_eq_left_iff πŸ“–mathematicalβ€”Cardinal
instAdd
instLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
instZero
β€”max_le_iff
le_or_gt
not_lt
ne_of_gt
LT.lt.trans_le
self_le_add_left
canonicallyOrderedAdd
lt_aleph0
add_lt_aleph0_iff
Nat.cast_zero
instCharZero
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_zero
add_eq_max
max_eq_left
add_eq_max πŸ“–mathematicalCardinal
instLE
aleph0
instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”le_antisymm
add_le_add
addLeftMono
addRightMono
le_max_left
le_max_right
add_eq_self
LE.le.trans
max_le
self_le_add_right
canonicallyOrderedAdd
self_le_add_left
add_eq_max' πŸ“–mathematicalCardinal
instLE
aleph0
instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”add_comm
max_comm
add_eq_max
add_eq_right πŸ“–mathematicalCardinal
instLE
aleph0
instAddβ€”add_comm
add_eq_left
add_eq_right_iff πŸ“–mathematicalβ€”Cardinal
instAdd
instLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
instZero
β€”add_comm
add_eq_left_iff
add_eq_self πŸ“–mathematicalCardinal
instLE
aleph0
instAddβ€”le_antisymm
two_mul
mul_eq_self
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
LE.le.trans
natCast_le_aleph0
self_le_add_left
add_le_add_iff_of_lt_aleph0 πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
instLE
instAdd
β€”Mathlib.Tactic.Contrapose.contrapose₁
not_le
lt_iff_le_and_ne
le_imp_le_of_le_of_le
add_le_add_left
addRightMono
le_refl
add_right_inj_of_lt_aleph0
add_le_max πŸ“–mathematicalβ€”Cardinal
instLE
instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”le_or_gt
add_eq_max
le_max_left
add_comm
max_comm
le_max_of_le_right
LT.lt.le
add_lt_aleph0
add_le_of_le πŸ“–mathematicalCardinal
instLE
aleph0
instAddβ€”LE.le.trans
add_le_add
addLeftMono
addRightMono
le_of_eq
add_eq_self
add_lt_add πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAddβ€”le_or_gt
add_lt_of_lt
lt_of_lt_of_le
canonicallyOrderedAdd
add_lt_aleph0_iff
lt_of_le_of_lt
add_le_add_iff_of_lt_aleph0
LT.lt.trans
LT.lt.le
add_comm
add_lt_add_iff_of_right_lt_aleph0
add_lt_add_iff_of_left_lt_aleph0 πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
instAddβ€”add_comm
add_lt_add_iff_of_right_lt_aleph0
add_lt_add_iff_of_right_lt_aleph0 πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
instAddβ€”Mathlib.Tactic.Contrapose.contrapose₁
add_le_add_iff_of_lt_aleph0
add_lt_of_lt πŸ“–mathematicalCardinal
instLE
aleph0
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAddβ€”LE.le.trans_lt
add_le_add
addLeftMono
addRightMono
le_max_left
le_max_right
lt_or_ge
LT.lt.trans_le
add_lt_aleph0
add_eq_self
max_lt
add_mk_eq_max πŸ“–mathematicalβ€”Cardinal
instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”add_eq_max
add_mk_eq_max' πŸ“–mathematicalβ€”Cardinal
instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”add_eq_max'
add_mk_eq_self πŸ“–mathematicalβ€”Cardinal
instAdd
β€”add_mk_eq_max
max_self
add_nat_eq πŸ“–mathematicalCardinal
instLE
aleph0
instAdd
instNatCast
β€”add_eq_left
LE.le.trans
natCast_le_aleph0
add_nat_inj πŸ“–mathematicalβ€”Cardinal
instAdd
instNatCast
β€”add_right_inj_of_lt_aleph0
natCast_lt_aleph0
add_nat_le_add_nat_iff πŸ“–mathematicalβ€”Cardinal
instLE
instAdd
instNatCast
β€”add_le_add_iff_of_lt_aleph0
natCast_lt_aleph0
add_one_eq πŸ“–mathematicalCardinal
instLE
aleph0
instAdd
instOne
β€”add_one_of_aleph0_le
add_one_inj πŸ“–mathematicalβ€”Cardinal
instAdd
instOne
β€”add_right_inj_of_lt_aleph0
one_lt_aleph0
add_one_le_add_one_iff πŸ“–mathematicalβ€”Cardinal
instLE
instAdd
instOne
β€”add_le_add_iff_of_lt_aleph0
one_lt_aleph0
add_right_inj_of_lt_aleph0 πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
instAddβ€”eq_of_add_eq_add_right
aleph0_mul_aleph πŸ“–mathematicalβ€”Cardinal
instMul
aleph0
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
β€”aleph0_mul_eq
aleph0_le_aleph
aleph0_mul_eq πŸ“–mathematicalCardinal
instLE
aleph0
instMulβ€”mul_eq_max
le_rfl
max_eq_right
aleph0_mul_mk_eq πŸ“–mathematicalβ€”Cardinal
instMul
aleph0
β€”aleph0_mul_eq
aleph_add_aleph πŸ“–mathematicalβ€”Cardinal
instAdd
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
β€”add_eq_max
aleph0_le_aleph
aleph_max
aleph_mul_aleph πŸ“–mathematicalβ€”Cardinal
instMul
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
β€”mul_eq_max
aleph0_le_aleph
aleph_max
aleph_mul_aleph0 πŸ“–mathematicalβ€”Cardinal
instMul
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
aleph0
β€”mul_aleph0_eq
aleph0_le_aleph
ciSup_add πŸ“–mathematicalBddAbove
Cardinal
instLE
Set.range
instAdd
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”le_imp_le_of_le_of_le
add_le_add_left
addRightMono
le_ciSup
le_refl
le_antisymm
Set.forall_mem_range
lt_or_ge
exists_eq_of_iSup_eq_of_not_isSuccLimit
not_isSuccLimit_of_lt_aleph0
add_eq_max
max_le_iff
ciSup_mono
self_le_add_right
canonicallyOrderedAdd
LE.le.trans
self_le_add_left
ciSup_le'
ciSup_add_ciSup πŸ“–mathematicalBddAbove
Cardinal
instLE
Set.range
instAdd
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”ciSup_add
add_ciSup
ciSup_mul πŸ“–mathematicalβ€”Cardinal
instMul
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”isEmpty_or_nonempty
ciSup_of_empty
bot_eq_zero'
canonicallyOrderedAdd
MulZeroClass.zero_mul
eq_or_ne
MulZeroClass.mul_zero
ciSup_const
le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
le_ciSup
le_antisymm
Set.forall_mem_range
lt_or_ge
exists_eq_of_iSup_eq_of_not_isSuccLimit
not_isSuccLimit_of_lt_aleph0
mul_eq_max_of_aleph0_le_left
max_le_iff
exists_lt_of_lt_ciSup'
LT.lt.trans_le
one_lt_aleph0
ciSup_mono
le_mul_right
LE.le.trans
le_mul_left
LT.lt.ne'
LT.lt.trans
zero_lt_one
IsOrderedRing.toZeroLEOneClass
isOrderedRing
NeZero.charZero_one
instCharZero
ciSup_le'
csSup_of_not_bddAbove
csSup_empty
ciSup_mul_ciSup πŸ“–mathematicalβ€”Cardinal
instMul
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”ciSup_mul
mul_ciSup
eq_of_add_eq_add_left πŸ“–β€”Cardinal
instAdd
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
β€”β€”le_or_gt
LT.lt.trans_le
eq_of_add_eq_of_aleph0_le
add_eq_right
LT.lt.le
not_le
lt_irrefl
LE.le.trans_lt
LE.le.trans
self_le_add_left
canonicallyOrderedAdd
add_lt_aleph0
lt_aleph0
instCharZero
add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
eq_of_add_eq_add_right πŸ“–β€”Cardinal
instAdd
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
β€”β€”eq_of_add_eq_add_left
add_comm
eq_of_add_eq_of_aleph0_le πŸ“–β€”Cardinal
instAdd
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instLE
aleph0
β€”β€”le_antisymm
self_le_add_left
canonicallyOrderedAdd
not_lt
add_lt_of_lt
extend_function πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Set
Set.instMembership
Function.Embedding
Set.Elem
Function.instFunLikeEmbedding
β€”Function.Embedding.inj'
Equiv.Set.sumCompl_symm_apply_of_mem
extend_function_finite πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Set
Set.instMembership
Function.Embedding
Set.Elem
Function.instFunLikeEmbedding
β€”extend_function
lift_mk_eq'
mk_compl_eq_mk_compl_finite_lift
mk_range_eq_of_injective
Function.Embedding.inj'
extend_function_of_lt πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Set
Set.instMembership
Function.Embedding
Function.instFunLikeEmbedding
β€”extend_function_finite
Finite.of_fintype
extend_function
lift_mk_eq'
mk_compl_of_infinite
Infinite.of_injective
Equiv.injective
lift_lt
mk_range_eq_of_injective
Function.Embedding.injective
le_mul_left πŸ“–mathematicalβ€”Cardinal
instLE
instMul
β€”one_mul
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
one_le_iff_ne_zero
le_mul_right πŸ“–mathematicalβ€”Cardinal
instLE
instMul
β€”mul_comm
le_mul_left
mk_add_one_eq πŸ“–mathematicalβ€”Cardinal
instAdd
instOne
β€”add_one_eq
mk_arrow_eq_zero_iff πŸ“–mathematicalβ€”Cardinal
instZero
β€”β€”
mk_bounded_set_le πŸ“–mathematicalβ€”Cardinal
instLE
Set
Set.Elem
instPowCardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”LE.le.trans
mk_image_le
mk_bounded_set_le_of_infinite
Sum.infinite_of_left
instInfiniteULift
instInfiniteNat
max_comm
add_eq_max
le_refl
mk_bounded_set_le_of_infinite πŸ“–mathematicalβ€”Cardinal
instLE
Set
Set.Elem
instPowCardinal
β€”add_one_eq
inductionOn
mk_le_of_surjective
le_trans
mk_preimage_of_injective
mk_range_le
Set.ext
Function.Embedding.inj'
mk_bounded_subset_le πŸ“–mathematicalβ€”Cardinal
instLE
Set
Set.instHasSubset
Set.Elem
instPowCardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”le_trans
Set.preimage_eq_preimage'
Subtype.range_coe
LE.le.trans
mk_preimage_of_injective
Subtype.val_injective
mk_bounded_set_le
mk_compl_eq_mk_compl_finite πŸ“–mathematicalSet.ElemCompl.compl
Set
Set.instCompl
β€”mk_compl_eq_mk_compl_finite_lift
mk_compl_eq_mk_compl_finite_lift πŸ“–mathematicallift
Set.Elem
Compl.compl
Set
Set.instCompl
β€”nonempty_fintype
lift_mk_eq'
Fintype.ofEquiv_card
CanLift.prf
Set.instCanLiftFinsetCoeFinite
Set.toFinite
Subtype.finite
Finite.of_fintype
mk_coe_finset
Finset.card_compl
mk_fintype
Fintype.card_coe
lift_natCast
instCharZero
mk_compl_eq_mk_compl_finite_same πŸ“–mathematicalSet.ElemCompl.compl
Set
Set.instCompl
β€”mk_compl_eq_mk_compl_finite
mk_compl_eq_mk_compl_infinite πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Compl.compl
Set
Set.instCompl
β€”mk_compl_of_infinite
mk_compl_finset_of_infinite πŸ“–mathematicalβ€”Set.Elem
Compl.compl
Set
Set.instCompl
SetLike.coe
Finset
Finset.instSetLike
β€”mk_compl_of_infinite
LT.lt.trans_le
finset_card_lt_aleph0
mk_compl_of_infinite πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Compl.compl
Set
Set.instCompl
β€”eq_of_add_eq_of_aleph0_le
mk_sum_compl
mk_embedding_eq_arrow_of_le πŸ“–mathematicalβ€”Function.Embeddingβ€”mk_embedding_eq_arrow_of_lift_le
lift_le
mk_embedding_eq_arrow_of_lift_le πŸ“–mathematicalβ€”Function.Embeddingβ€”LE.le.antisymm
mk_embedding_le_arrow
Equiv.cardinal_eq
eq
mul_eq_self
lift_mk_le'
Function.Embedding.injective
mk_embedding_eq_zero_iff_lift_lt πŸ“–mathematicalβ€”Function.Embedding
Cardinal
instZero
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
β€”mk_eq_zero_iff
not_nonempty_iff
lift_mk_le'
not_le
mk_embedding_eq_zero_iff_lt πŸ“–mathematicalβ€”Function.Embedding
Cardinal
instZero
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”mk_embedding_eq_zero_iff_lift_lt
lift_lt
mk_embedding_le_arrow πŸ“–mathematicalβ€”Cardinal
instLE
Function.Embedding
β€”DFunLike.coe_injective
mk_equiv_comm πŸ“–mathematicalβ€”Equivβ€”Equiv.cardinal_eq
Equiv.symm_bijective
mk_equiv_eq_arrow_of_eq πŸ“–mathematicalβ€”Equivβ€”mk_equiv_eq_arrow_of_lift_eq
mk_equiv_eq_arrow_of_lift_eq πŸ“–mathematicalliftEquivβ€”lift_mk_eq'
lift_id'
mk_perm_eq_self_power
power_def
mk_equiv_eq_zero_iff_lift_ne πŸ“–mathematicalβ€”Equiv
Cardinal
instZero
β€”mk_eq_zero_iff
not_nonempty_iff
lift_mk_eq'
mk_equiv_eq_zero_iff_ne πŸ“–mathematicalβ€”Equiv
Cardinal
instZero
β€”mk_equiv_eq_zero_iff_lift_ne
lift_id
mk_equiv_le_embedding πŸ“–mathematicalβ€”Cardinal
instLE
Equiv
Function.Embedding
β€”Equiv.toEmbedding_injective
mk_equiv_of_eq πŸ“–mathematicalβ€”Equiv
Cardinal
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
mk_equiv_of_lift_eq
lift_id
mk_equiv_of_lift_eq πŸ“–mathematicalliftEquiv
Cardinal
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
lift_mk_eq'
lift_id'
lift_umax
mk_perm_eq_two_power
lift_power
lift_natCast
mk_finset_of_infinite πŸ“–mathematicalβ€”Finsetβ€”le_antisymm
mk_le_of_injective
mk_le_of_surjective
List.toFinset_surjective
mk_list_eq_aleph0 πŸ“–mathematicalβ€”aleph0β€”LE.le.antisymm
mk_le_aleph0
List.countable
instInfiniteListOfNonempty
mk_list_eq_max πŸ“–mathematicalβ€”Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”finite_or_infinite
mk_list_eq_aleph0
Finite.to_countable
max_eq_left
mk_le_aleph0
max_eq_right
mk_list_eq_max_mk_aleph0 πŸ“–mathematicalβ€”Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”mk_list_eq_max
max_comm
mk_list_eq_mk πŸ“–β€”β€”β€”β€”le_antisymm
le_def
mk_list_eq_sum_pow
sum_le_sum
pow_le
natCast_lt_aleph0
sum_const
mk_eq_aleph0
instCountableNat
instInfiniteNat
lift_aleph0
lift_uzero
aleph0_mul_eq
mk_list_le_max πŸ“–mathematicalβ€”Cardinal
instLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”finite_or_infinite
LE.le.trans
mk_le_aleph0
List.countable
Finite.to_countable
le_max_left
le_max_right
mk_mul_aleph0_eq πŸ“–mathematicalβ€”Cardinal
instMul
aleph0
β€”mul_aleph0_eq
mk_perm_eq_self_power πŸ“–mathematicalβ€”Equiv.Perm
Cardinal
instPowCardinal
β€”LE.le.antisymm
LE.le.trans
mk_equiv_le_embedding
mk_embedding_le_arrow
mk_prod
Nat.instAtLeastTwoHAddOfNat
lift_uzero
mk_fintype
lift_ofNat
mul_two
add_mk_eq_max
max_self
power_def
power_self_eq
Equiv.cardinal_eq
mk_pi
prod_const
mk_perm_eq_two_power πŸ“–mathematicalβ€”Equiv.Perm
Cardinal
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
mk_perm_eq_self_power
power_self_eq
mk_surjective_eq_arrow_of_le πŸ“–mathematicalβ€”Set.Elem
setOf
β€”mk_surjective_eq_arrow_of_lift_le
lift_le
mk_surjective_eq_arrow_of_lift_le πŸ“–mathematicalβ€”Set.Elem
setOf
β€”LE.le.antisymm
mk_set_le
mk_sum
lift_add
lift_lift
lift_umax
add_eq_left
aleph0_le_lift
Equiv.right_inv
Equiv.apply_symm_apply
mk_surjective_eq_zero_iff πŸ“–mathematicalβ€”Set.Elem
setOf
Cardinal
instZero
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”mk_surjective_eq_zero_iff_lift
lift_lt
mk_surjective_eq_zero_iff_lift πŸ“–mathematicalβ€”Set.Elem
setOf
Cardinal
instZero
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_or_eq
lift_mk_le'
mul_aleph0_eq πŸ“–mathematicalCardinal
instLE
aleph0
instMulβ€”mul_eq_max
le_rfl
max_eq_left
mul_ciSup πŸ“–mathematicalβ€”Cardinal
instMul
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mul_comm
ciSup_mul
mul_eq_left πŸ“–mathematicalCardinal
instLE
aleph0
instMulβ€”mul_eq_max_of_aleph0_le_left
max_eq_left
mul_eq_left_iff πŸ“–mathematicalβ€”Cardinal
instMul
instLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
instOne
instZero
β€”max_le_iff
le_or_gt
LE.le.not_gt
aleph0_pos
not_lt
ne_of_gt
LT.lt.trans_le
le_mul_left
MulZeroClass.mul_zero
lt_aleph0
mul_lt_aleph0_iff
Nat.cast_one
instCharZero
le_antisymm
mul_one
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
one_le_iff_ne_zero
mul_eq_max_of_aleph0_le_left
max_eq_left
MulZeroClass.zero_mul
mul_eq_max πŸ“–mathematicalCardinal
instLE
aleph0
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”le_antisymm
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
le_max_left
le_max_right
mul_eq_self
LE.le.trans
max_le
mul_one
mul_le_mul_right
one_le_aleph0
one_mul
mul_le_mul_left
mul_eq_max' πŸ“–mathematicalCardinal
instLE
aleph0
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”aleph0_le_mul_iff
mul_eq_max_of_aleph0_le_left
mul_eq_max_of_aleph0_le_right
mul_eq_max_of_aleph0_le_left πŸ“–mathematicalCardinal
instLE
aleph0
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”le_or_gt
mul_eq_max
LE.le.antisymm
mul_le_max_of_aleph0_le_left
LE.le.trans
LT.lt.le
max_eq_left
mul_one
mul_le_mul_right
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
one_le_iff_ne_zero
mul_eq_max_of_aleph0_le_right πŸ“–mathematicalCardinal
instLE
aleph0
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mul_comm
max_comm
mul_eq_max_of_aleph0_le_left
mul_eq_right πŸ“–mathematicalCardinal
instLE
aleph0
instMulβ€”mul_comm
mul_eq_left
mul_eq_self πŸ“–mathematicalCardinal
instLE
aleph0
instMulβ€”le_antisymm
lt_wf
inductionOn
ord_eq
instIsStrictTotalOrderOfIsWellOrder
RelEmbedding.isWellOrder
instIsWellOrderProdLex
isWellOrder_lt
Ordinal.wellFoundedLT
le_of_forall_lt
Ordinal.typein_surj
lt_ord
lt_of_le_of_lt
max_le_iff
le_iff_lt_or_eq
irrefl
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
Sum.instIsWellOrderLex
instIsWellOrderEmptyRelationOfSubsingleton
lt_or_ge
LT.lt.trans_le
mul_lt_aleph0
Order.IsSuccLimit.succ_lt
isSuccLimit_ord
Ordinal.typein_lt_type
LE.le.trans_lt
Ordinal.card_le_card
mul_one
mul_le_mul_right
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
LE.le.trans
one_le_aleph0
mul_le_max πŸ“–mathematicalβ€”Cardinal
instLE
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”eq_or_ne
MulZeroClass.zero_mul
sup_of_le_right
canonicallyOrderedAdd
MulZeroClass.mul_zero
sup_of_le_left
le_or_gt
mul_eq_max_of_aleph0_le_left
le_max_left
mul_comm
max_comm
le_max_of_le_right
LT.lt.le
mul_lt_aleph0
mul_le_max_of_aleph0_le_left πŸ“–mathematicalCardinal
instLE
aleph0
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mul_eq_self
LE.le.trans
le_max_left
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
le_max_right
mul_le_max_of_aleph0_le_right πŸ“–mathematicalCardinal
instLE
aleph0
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mul_comm
max_comm
mul_le_max_of_aleph0_le_left
mul_lt_of_lt πŸ“–mathematicalCardinal
instLE
aleph0
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instMulβ€”LE.le.trans_lt
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
le_max_left
le_max_right
lt_or_ge
LT.lt.trans_le
mul_lt_aleph0
mul_eq_self
max_lt
mul_mk_eq_max πŸ“–mathematicalβ€”Cardinal
instMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mul_eq_max
mul_natCast_inj πŸ“–mathematicalβ€”Cardinal
instMul
instNatCast
β€”StrictMono.injective
mul_natCast_strictMono
mul_natCast_le_mul_natCast πŸ“–mathematicalβ€”Cardinal
instLE
instMul
instNatCast
β€”StrictMono.le_iff_le
mul_natCast_strictMono
mul_natCast_lt_mul_natCast πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instMul
instNatCast
β€”StrictMono.lt_iff_lt
mul_natCast_strictMono
mul_natCast_strictMono πŸ“–mathematicalβ€”StrictMono
Cardinal
PartialOrder.toPreorder
partialOrder
instMul
instNatCast
β€”mul_comm
natCast_mul_strictMono
natCast_mul_inj πŸ“–mathematicalβ€”Cardinal
instMul
instNatCast
β€”StrictMono.injective
natCast_mul_strictMono
natCast_mul_le_natCast_mul πŸ“–mathematicalβ€”Cardinal
instLE
instMul
instNatCast
β€”StrictMono.le_iff_le
natCast_mul_strictMono
natCast_mul_lt_natCast_mul πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instMul
instNatCast
β€”StrictMono.lt_iff_lt
natCast_mul_strictMono
natCast_mul_strictMono πŸ“–mathematicalβ€”StrictMono
Cardinal
PartialOrder.toPreorder
partialOrder
instMul
instNatCast
β€”Nat.cast_one
one_mul
strictMono_id
Nat.cast_add
add_mul
Distrib.rightDistribClass
add_lt_add
nat_add_eq πŸ“–mathematicalCardinal
instLE
aleph0
instAdd
instNatCast
β€”add_comm
add_nat_eq
nat_power_eq πŸ“–mathematicalCardinal
instLE
aleph0
instPowCardinal
instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”power_eq_two_power
Nat.instAtLeastTwoHAddOfNat
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
instCharZero
LE.le.trans
natCast_le_aleph0
pow_eq πŸ“–mathematicalCardinal
instLE
aleph0
instOne
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPowCardinalβ€”LE.le.antisymm
pow_le
self_le_power
pow_le πŸ“–mathematicalCardinal
instLE
aleph0
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPowCardinalβ€”lt_aleph0
Nat.cast_zero
power_zero
le_imp_le_of_le_of_le
le_of_lt
one_lt_aleph0
le_refl
Nat.cast_succ
power_add
power_one
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
mul_eq_self
power_eq_two_power πŸ“–mathematicalCardinal
instLE
aleph0
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instPowCardinalβ€”Nat.instAtLeastTwoHAddOfNat
le_antisymm
power_le_power_right
power_self_eq
power_le_aleph0 πŸ“–mathematicalCardinal
instLE
aleph0
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPowCardinalβ€”CanLift.prf
canLiftCardinalNat
sup_of_le_right
power_nat_le_max
power_nat_eq πŸ“–mathematicalCardinal
instLE
aleph0
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
β€”pow_eq
Nat.cast_one
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
instCharZero
natCast_lt_aleph0
power_nat_le πŸ“–mathematicalCardinal
instLE
aleph0
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
β€”pow_le
natCast_lt_aleph0
power_nat_le_max πŸ“–mathematicalβ€”Cardinal
instLE
instPowCardinal
instNatCast
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”le_or_gt
le_max_of_le_left
power_nat_le
le_max_of_le_right
LT.lt.le
power_lt_aleph0
natCast_lt_aleph0
power_self_eq πŸ“–mathematicalCardinal
instLE
aleph0
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”LE.le.antisymm
Nat.instAtLeastTwoHAddOfNat
LE.le.trans
power_le_power_right
LT.lt.le
cantor
power_mul
mul_eq_self
le_refl
natCast_le_aleph0
powerlt_aleph0 πŸ“–mathematicalCardinal
instLE
aleph0
powerltβ€”le_antisymm
powerlt_le
lt_aleph0
power_nat_le
power_one
le_powerlt
one_lt_aleph0
powerlt_aleph0_le πŸ“–mathematicalβ€”Cardinal
instLE
powerlt
aleph0
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”le_or_gt
powerlt_aleph0
le_max_left
powerlt_le
LE.le.trans
LT.lt.le
power_lt_aleph0
le_max_right
prod_eq_two_power πŸ“–mathematicalCardinal
instLE
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
lift
prod
instPowCardinal
β€”Nat.instAtLeastTwoHAddOfNat
lift_id'
lift_prod
lift_two_power
le_antisymm
LE.le.trans_eq
prod_le_prod
prod_const
lift_lift
lift_power
power_self_eq
lift_umax
prod_const'
lift_two
lift_le
sum_eq_iSup πŸ“–mathematicalCardinal
instLE
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
sumβ€”sum_eq_iSup_of_mk_le_iSup
sum_eq_iSup_lift πŸ“–mathematicalCardinal
instLE
lift
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
sumβ€”sum_eq_iSup_of_lift_mk_le_iSup
sum_eq_iSup_of_lift_mk_le_iSup πŸ“–mathematicalCardinal
instLE
lift
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
sumβ€”lift_id'
sum_eq_lift_iSup_of_lift_mk_le_lift_iSup
UnivLE.small
univLE_of_max
UnivLE.self
lift_umax
sum_eq_iSup_of_mk_le_iSup πŸ“–mathematicalCardinal
instLE
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
sumβ€”sum_eq_iSup_of_lift_mk_le_iSup
lift_id
sum_eq_lift_iSup_of_lift_mk_le_lift_iSup πŸ“–mathematicalCardinal
instLE
lift
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
sumβ€”LE.le.antisymm'
lift_iSup_le_sum
mul_eq_max
aleph0_le_lift
LE.le.trans
lift_iSup
bddAbove_of_small
small_range
max_eq_right
sum_le_lift_mk_mul_iSup_lift
sum_pow_eq_max_aleph0 πŸ“–mathematicalβ€”sum
Cardinal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”nonempty_out
mk_out
mk_list_eq_sum_pow
mk_list_eq_max
sum_pow_le_max_aleph0 πŸ“–mathematicalβ€”Cardinal
instLE
sum
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
β€”mk_out
mk_list_eq_sum_pow
mk_list_le_max

---

← Back to Index