π Source: Mathlib/SetTheory/Cardinal/Arithmetic.lean
add_ciSup
add_eq_left
add_eq_left_iff
add_eq_max
add_eq_max'
add_eq_right
add_eq_right_iff
add_eq_self
add_le_add_iff_of_lt_aleph0
add_le_max
add_le_of_le
add_lt_add
add_lt_add_iff_of_left_lt_aleph0
add_lt_add_iff_of_right_lt_aleph0
add_lt_of_lt
add_mk_eq_max
add_mk_eq_max'
add_mk_eq_self
add_nat_eq
add_nat_inj
add_nat_le_add_nat_iff
add_one_eq
add_one_inj
add_one_le_add_one_iff
add_right_inj_of_lt_aleph0
aleph0_mul_aleph
aleph0_mul_eq
aleph0_mul_mk_eq
aleph_add_aleph
aleph_mul_aleph
aleph_mul_aleph0
ciSup_add
ciSup_add_ciSup
ciSup_mul
ciSup_mul_ciSup
eq_of_add_eq_add_left
eq_of_add_eq_add_right
eq_of_add_eq_of_aleph0_le
extend_function
extend_function_finite
extend_function_of_lt
le_mul_left
le_mul_right
mk_add_one_eq
mk_arrow_eq_zero_iff
mk_bounded_set_le
mk_bounded_set_le_of_infinite
mk_bounded_subset_le
mk_compl_eq_mk_compl_finite
mk_compl_eq_mk_compl_finite_lift
mk_compl_eq_mk_compl_finite_same
mk_compl_eq_mk_compl_infinite
mk_compl_finset_of_infinite
mk_compl_of_infinite
mk_embedding_eq_arrow_of_le
mk_embedding_eq_arrow_of_lift_le
mk_embedding_eq_zero_iff_lift_lt
mk_embedding_eq_zero_iff_lt
mk_embedding_le_arrow
mk_equiv_comm
mk_equiv_eq_arrow_of_eq
mk_equiv_eq_arrow_of_lift_eq
mk_equiv_eq_zero_iff_lift_ne
mk_equiv_eq_zero_iff_ne
mk_equiv_le_embedding
mk_equiv_of_eq
mk_equiv_of_lift_eq
mk_finset_of_infinite
mk_list_eq_aleph0
mk_list_eq_max
mk_list_eq_max_mk_aleph0
mk_list_eq_mk
mk_list_le_max
mk_mul_aleph0_eq
mk_perm_eq_self_power
mk_perm_eq_two_power
mk_surjective_eq_arrow_of_le
mk_surjective_eq_arrow_of_lift_le
mk_surjective_eq_zero_iff
mk_surjective_eq_zero_iff_lift
mul_aleph0_eq
mul_ciSup
mul_eq_left
mul_eq_left_iff
mul_eq_max
mul_eq_max'
mul_eq_max_of_aleph0_le_left
mul_eq_max_of_aleph0_le_right
mul_eq_right
mul_eq_self
mul_le_max
mul_le_max_of_aleph0_le_left
mul_le_max_of_aleph0_le_right
mul_lt_of_lt
mul_mk_eq_max
mul_natCast_inj
mul_natCast_le_mul_natCast
mul_natCast_lt_mul_natCast
mul_natCast_strictMono
natCast_mul_inj
natCast_mul_le_natCast_mul
natCast_mul_lt_natCast_mul
natCast_mul_strictMono
nat_add_eq
nat_power_eq
pow_eq
pow_le
power_eq_two_power
power_le_aleph0
power_nat_eq
power_nat_le
power_nat_le_max
power_self_eq
powerlt_aleph0
powerlt_aleph0_le
prod_eq_two_power
sum_eq_iSup
sum_eq_iSup_lift
sum_eq_iSup_of_lift_mk_le_iSup
sum_eq_iSup_of_mk_le_iSup
sum_eq_lift_iSup_of_lift_mk_le_lift_iSup
sum_pow_eq_max_aleph0
sum_pow_le_max_aleph0
BddAbove
Cardinal
instLE
Set.range
instAdd
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
add_comm
aleph0
max_eq_left
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
instZero
max_le_iff
le_or_gt
not_lt
ne_of_gt
LT.lt.trans_le
self_le_add_left
canonicallyOrderedAdd
lt_aleph0
add_lt_aleph0_iff
Nat.cast_zero
instCharZero
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_zero
le_antisymm
add_le_add
addLeftMono
addRightMono
le_max_left
le_max_right
LE.le.trans
max_le
self_le_add_right
max_comm
two_mul
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
natCast_le_aleph0
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Mathlib.Tactic.Contrapose.contraposeβ
not_le
lt_iff_le_and_ne
le_imp_le_of_le_of_le
add_le_add_left
le_refl
le_max_of_le_right
LT.lt.le
add_lt_aleph0
le_of_eq
lt_of_lt_of_le
lt_of_le_of_lt
LT.lt.trans
LE.le.trans_lt
lt_or_ge
max_lt
max_self
instNatCast
natCast_lt_aleph0
instOne
add_one_of_aleph0_le
one_lt_aleph0
instMul
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
aleph0_le_aleph
le_rfl
max_eq_right
Ordinal.instConditionallyCompleteLinearOrderBot
aleph_max
le_ciSup
Set.forall_mem_range
exists_eq_of_iSup_eq_of_not_isSuccLimit
not_isSuccLimit_of_lt_aleph0
ciSup_mono
ciSup_le'
isEmpty_or_nonempty
ciSup_of_empty
bot_eq_zero'
MulZeroClass.zero_mul
eq_or_ne
MulZeroClass.mul_zero
ciSup_const
exists_lt_of_lt_ciSup'
LT.lt.ne'
zero_lt_one
IsOrderedRing.toZeroLEOneClass
isOrderedRing
NeZero.charZero_one
csSup_of_not_bddAbove
csSup_empty
lt_irrefl
add_left_cancel
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Set
Set.instMembership
Function.Embedding
Set.Elem
Function.instFunLikeEmbedding
Function.Embedding.inj'
Equiv.Set.sumCompl_symm_apply_of_mem
lift_mk_eq'
mk_range_eq_of_injective
Finite.of_fintype
Infinite.of_injective
Equiv.injective
lift_lt
Function.Embedding.injective
one_mul
one_le_iff_ne_zero
mul_comm
instPowCardinal
mk_image_le
Sum.infinite_of_left
instInfiniteULift
instInfiniteNat
inductionOn
mk_le_of_surjective
le_trans
mk_preimage_of_injective
mk_range_le
Set.ext
Set.instHasSubset
Set.preimage_eq_preimage'
Subtype.range_coe
Subtype.val_injective
Compl.compl
Set.instCompl
lift
nonempty_fintype
Fintype.ofEquiv_card
CanLift.prf
Set.instCanLiftFinsetCoeFinite
Set.toFinite
Subtype.finite
mk_coe_finset
Finset.card_compl
mk_fintype
Fintype.card_coe
lift_natCast
SetLike.coe
Finset
Finset.instSetLike
finset_card_lt_aleph0
mk_sum_compl
lift_le
LE.le.antisymm
Equiv.cardinal_eq
eq
lift_mk_le'
mk_eq_zero_iff
not_nonempty_iff
DFunLike.coe_injective
Equiv.symm_bijective
lift_id'
power_def
lift_id
Equiv.toEmbedding_injective
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
lift_umax
lift_power
mk_le_of_injective
List.toFinset_surjective
mk_le_aleph0
List.countable
instInfiniteListOfNonempty
finite_or_infinite
Finite.to_countable
le_def
mk_list_eq_sum_pow
sum_le_sum
sum_const
mk_eq_aleph0
instCountableNat
lift_aleph0
lift_uzero
Equiv.Perm
mk_prod
lift_ofNat
mul_two
mk_pi
prod_const
setOf
mk_set_le
mk_sum
lift_add
lift_lift
aleph0_le_lift
Equiv.right_inv
Equiv.apply_symm_apply
Mathlib.Tactic.Contrapose.contrapose_iffβ
Mathlib.Tactic.Push.not_and_or_eq
LE.le.not_gt
aleph0_pos
mul_lt_aleph0_iff
Nat.cast_one
mul_one
mul_le_mul'
mul_le_mul_right
one_le_aleph0
aleph0_le_mul_iff
lt_wf
ord_eq
instIsStrictTotalOrderOfIsWellOrder
RelEmbedding.isWellOrder
instIsWellOrderProdLex
isWellOrder_lt
Ordinal.wellFoundedLT
le_of_forall_lt
Ordinal.typein_surj
lt_ord
le_iff_lt_or_eq
irrefl
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
Sum.instIsWellOrderLex
instIsWellOrderEmptyRelationOfSubsingleton
mul_lt_aleph0
Order.IsSuccLimit.succ_lt
isSuccLimit_ord
Ordinal.typein_lt_type
Ordinal.card_le_card
sup_of_le_right
sup_of_le_left
StrictMono.injective
StrictMono.le_iff_le
StrictMono.lt_iff_lt
StrictMono
strictMono_id
Nat.cast_add
add_mul
Distrib.rightDistribClass
self_le_power
power_zero
le_of_lt
Nat.cast_succ
power_add
power_one
power_le_power_right
canLiftCardinalNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
le_max_of_le_left
power_lt_aleph0
cantor
power_mul
powerlt
powerlt_le
le_powerlt
prod
lift_prod
lift_two_power
LE.le.trans_eq
prod_le_prod
prod_const'
lift_two
sum
UnivLE.small
univLE_of_max
UnivLE.self
LE.le.antisymm'
lift_iSup_le_sum
lift_iSup
bddAbove_of_small
small_range
sum_le_lift_mk_mul_iSup_lift
nonempty_out
mk_out
---
β Back to Index