π Source: Mathlib/SetTheory/Cardinal/Continuum.lean
continuum
termπ
aleph0_add_continuum
aleph0_le_continuum
aleph0_lt_continuum
aleph0_mul_continuum
aleph0_power_aleph0
aleph_one_le_continuum
beth_one
continuum_add_aleph0
continuum_add_nat
continuum_add_ofNat
continuum_add_self
continuum_le_lift
continuum_lt_lift
continuum_mul_aleph0
continuum_mul_nat
continuum_mul_ofNat
continuum_mul_self
continuum_ne_zero
continuum_pos
continuum_power_aleph0
continuum_toENat
continuum_toNat
lift_continuum
lift_le_continuum
lift_lt_continuum
mk_set_nat
nat_add_continuum
nat_lt_continuum
nat_mul_continuum
nat_power_aleph0
ofNat_add_continuum
ofNat_mul_continuum
power_aleph0_of_le_continuum
two_power_aleph0
mk_Iio_real
mk_real
mk_Icc_real
mk_Iic_real
MeasurableSpace.cardinal_measurableSet_le_continuum
IsClosed.two_pow_mk_lt_continuum
mk_univ_real
MeasurableSpace.cardinal_generateMeasurable_le_continuum
Real.rank_rat_real
continuum_le_cardinal_of_nontriviallyNormedField
mk_univ_complex
mk_complex
mk_Ioo_real
mk_Ici_real
IsClosed.mk_lt_continuum
Complex.rank_rat_complex
mk_Ico_real
continuum_le_cardinal_of_module
mk_Ioc_real
continuum_le_cardinal_of_isOpen
mk_Ioi_real
Cardinal
instAdd
aleph0
add_eq_right
instLE
LT.lt.le
Preorder.toLT
PartialOrder.toPreorder
partialOrder
cantor
instMul
mul_comm
instPowCardinal
power_self_eq
le_rfl
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
Ordinal.one
succ_aleph0
Order.succ_le_of_lt
beth
Nat.instAtLeastTwoHAddOfNat
Ordinal.succ_zero
beth_zero
beth_succ
add_comm
instNatCast
add_eq_self
lift
lift_le
lift_lt
mul_eq_left
aleph0_ne_zero
OfNat.ofNat_ne_zero
Nat.instCharZero
LT.lt.ne'
instZero
power_mul
OrderRingHom
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
toENat
Top.top
instTopENat
toENat_eq_top
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
toNat
toNat_apply_of_aleph0_le
lift_two_power
lift_aleph0
Set
mk_set
mk_eq_aleph0
instCountableNat
instInfiniteNat
nat_add_eq
LT.lt.trans
natCast_lt_aleph0
mul_eq_right
Nat.cast_ne_zero
instCharZero
nat_power_eq
instOfNatAtLeastTwo
le_antisymm
power_le_power_right
---
β Back to Index