Documentation Verification Report

Continuum

πŸ“ Source: Mathlib/SetTheory/Cardinal/Continuum.lean

Statistics

MetricCount
Definitionscontinuum, term𝔠
2
Theoremsaleph0_add_continuum, aleph0_le_continuum, aleph0_lt_continuum, aleph0_mul_continuum, aleph0_power_aleph0, aleph_one_le_continuum, beth_one, continuum_add_aleph0, continuum_add_nat, continuum_add_ofNat, continuum_add_self, continuum_le_lift, continuum_lt_lift, continuum_mul_aleph0, continuum_mul_nat, continuum_mul_ofNat, continuum_mul_self, continuum_ne_zero, continuum_pos, continuum_power_aleph0, continuum_toENat, continuum_toNat, lift_continuum, lift_le_continuum, lift_lt_continuum, mk_set_nat, nat_add_continuum, nat_lt_continuum, nat_mul_continuum, nat_power_aleph0, ofNat_add_continuum, ofNat_mul_continuum, power_aleph0_of_le_continuum, two_power_aleph0
34
Total36

Cardinal

Definitions

NameCategoryTheorems
continuum πŸ“–CompOp
53 mathmath: continuum_mul_ofNat, mk_Iio_real, aleph0_le_continuum, nat_add_continuum, aleph0_power_aleph0, continuum_mul_self, aleph_one_le_continuum, nat_lt_continuum, aleph0_add_continuum, continuum_lt_lift, nat_mul_continuum, continuum_mul_nat, ofNat_mul_continuum, beth_one, mk_real, mk_Icc_real, continuum_pos, continuum_add_self, continuum_mul_aleph0, ofNat_add_continuum, mk_Iic_real, aleph0_mul_continuum, MeasurableSpace.cardinal_measurableSet_le_continuum, IsClosed.two_pow_mk_lt_continuum, mk_univ_real, MeasurableSpace.cardinal_generateMeasurable_le_continuum, continuum_toENat, Real.rank_rat_real, continuum_le_cardinal_of_nontriviallyNormedField, continuum_add_aleph0, mk_univ_complex, continuum_le_lift, mk_set_nat, continuum_power_aleph0, continuum_add_ofNat, continuum_add_nat, mk_complex, mk_Ioo_real, mk_Ici_real, IsClosed.mk_lt_continuum, Complex.rank_rat_complex, two_power_aleph0, lift_lt_continuum, lift_le_continuum, mk_Ico_real, continuum_le_cardinal_of_module, mk_Ioc_real, nat_power_aleph0, aleph0_lt_continuum, lift_continuum, continuum_le_cardinal_of_isOpen, mk_Ioi_real, continuum_toNat
term𝔠 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_add_continuum πŸ“–mathematicalβ€”Cardinal
instAdd
aleph0
continuum
β€”add_eq_right
aleph0_le_continuum
aleph0_le_continuum πŸ“–mathematicalβ€”Cardinal
instLE
aleph0
continuum
β€”LT.lt.le
aleph0_lt_continuum
aleph0_lt_continuum πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
continuum
β€”cantor
aleph0_mul_continuum πŸ“–mathematicalβ€”Cardinal
instMul
aleph0
continuum
β€”mul_comm
continuum_mul_aleph0
aleph0_power_aleph0 πŸ“–mathematicalβ€”Cardinal
instPowCardinal
aleph0
continuum
β€”power_self_eq
le_rfl
aleph_one_le_continuum πŸ“–mathematicalβ€”Cardinal
instLE
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
aleph
Ordinal.one
continuum
β€”succ_aleph0
Order.succ_le_of_lt
aleph0_lt_continuum
beth_one πŸ“–mathematicalβ€”beth
Ordinal
Ordinal.one
continuum
β€”Nat.instAtLeastTwoHAddOfNat
Ordinal.succ_zero
beth_zero
beth_succ
continuum_add_aleph0 πŸ“–mathematicalβ€”Cardinal
instAdd
continuum
aleph0
β€”add_comm
aleph0_add_continuum
continuum_add_nat πŸ“–mathematicalβ€”Cardinal
instAdd
continuum
instNatCast
β€”add_comm
nat_add_continuum
continuum_add_ofNat πŸ“–mathematicalβ€”Cardinal
instAdd
continuum
β€”continuum_add_nat
continuum_add_self πŸ“–mathematicalβ€”Cardinal
instAdd
continuum
β€”add_eq_self
aleph0_le_continuum
continuum_le_lift πŸ“–mathematicalβ€”Cardinal
instLE
continuum
lift
β€”lift_continuum
lift_le
continuum_lt_lift πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
continuum
lift
β€”lift_continuum
lift_lt
continuum_mul_aleph0 πŸ“–mathematicalβ€”Cardinal
instMul
continuum
aleph0
β€”mul_eq_left
aleph0_le_continuum
aleph0_ne_zero
continuum_mul_nat πŸ“–mathematicalβ€”Cardinal
instMul
continuum
instNatCast
β€”mul_comm
nat_mul_continuum
continuum_mul_ofNat πŸ“–mathematicalβ€”Cardinal
instMul
continuum
β€”continuum_mul_nat
OfNat.ofNat_ne_zero
Nat.instCharZero
continuum_mul_self πŸ“–mathematicalβ€”Cardinal
instMul
continuum
β€”mul_eq_left
aleph0_le_continuum
le_rfl
continuum_ne_zero
continuum_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
continuum_pos
continuum_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
continuum
β€”nat_lt_continuum
continuum_power_aleph0 πŸ“–mathematicalβ€”Cardinal
instPowCardinal
continuum
aleph0
β€”Nat.instAtLeastTwoHAddOfNat
two_power_aleph0
power_mul
mul_eq_left
le_rfl
aleph0_ne_zero
continuum_toENat πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
PartialOrder.toPreorder
partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
toENat
continuum
Top.top
instTopENat
β€”toENat_eq_top
aleph0_le_continuum
continuum_toNat πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Cardinal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
toNat
continuum
β€”toNat_apply_of_aleph0_le
aleph0_le_continuum
lift_continuum πŸ“–mathematicalβ€”lift
continuum
β€”Nat.instAtLeastTwoHAddOfNat
two_power_aleph0
lift_two_power
lift_aleph0
lift_le_continuum πŸ“–mathematicalβ€”Cardinal
instLE
lift
continuum
β€”lift_continuum
lift_le
lift_lt_continuum πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
continuum
β€”lift_continuum
lift_lt
mk_set_nat πŸ“–mathematicalβ€”Set
continuum
β€”Nat.instAtLeastTwoHAddOfNat
mk_set
mk_eq_aleph0
instCountableNat
instInfiniteNat
nat_add_continuum πŸ“–mathematicalβ€”Cardinal
instAdd
instNatCast
continuum
β€”nat_add_eq
aleph0_le_continuum
nat_lt_continuum πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instNatCast
continuum
β€”LT.lt.trans
natCast_lt_aleph0
aleph0_lt_continuum
nat_mul_continuum πŸ“–mathematicalβ€”Cardinal
instMul
instNatCast
continuum
β€”mul_eq_right
aleph0_le_continuum
LT.lt.le
nat_lt_continuum
Nat.cast_ne_zero
instCharZero
nat_power_aleph0 πŸ“–mathematicalβ€”Cardinal
instPowCardinal
instNatCast
aleph0
continuum
β€”nat_power_eq
le_rfl
ofNat_add_continuum πŸ“–mathematicalβ€”Cardinal
instAdd
continuum
β€”nat_add_continuum
ofNat_mul_continuum πŸ“–mathematicalβ€”Cardinal
instMul
continuum
β€”nat_mul_continuum
OfNat.ofNat_ne_zero
Nat.instCharZero
power_aleph0_of_le_continuum πŸ“–mathematicalCardinal
instLE
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
continuum
instPowCardinal
aleph0
β€”Nat.instAtLeastTwoHAddOfNat
le_antisymm
continuum_power_aleph0
power_le_power_right
two_power_aleph0
two_power_aleph0 πŸ“–mathematicalβ€”Cardinal
instPowCardinal
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
aleph0
continuum
β€”Nat.instAtLeastTwoHAddOfNat

---

← Back to Index