Documentation Verification Report

CountableCover

📁 Source: Mathlib/SetTheory/Cardinal/CountableCover.lean

Statistics

MetricCount
Definitions0
Theoremsmk_le_of_countable_eventually_mem, mk_of_countable_eventually_mem, mk_subtype_le_of_countable_eventually_mem, mk_subtype_le_of_countable_eventually_mem_aux
4
Total4

Cardinal

Theorems

NameKindAssumesProvesValidatesDepends On
mk_le_of_countable_eventually_mem 📖Filter.Eventually
Set
Set.instMembership
Cardinal
instLE
Set.Elem
mk_univ
mk_subtype_le_of_countable_eventually_mem
mk_of_countable_eventually_mem 📖Filter.Eventually
Set
Set.instMembership
Set.Elem
le_antisymm
mk_le_of_countable_eventually_mem
Eq.le
Filter.nonempty_of_neBot
mk_set_le
mk_subtype_le_of_countable_eventually_mem 📖Filter.Eventually
Set
Set.instMembership
Cardinal
instLE
Set.Elem
Filter.map_neBot
mk_subtype_le_of_countable_eventually_mem_aux
instCountableULift
mk_preimage_down
mk_subtype_le_of_countable_eventually_mem_aux 📖Filter.Eventually
Set
Set.instMembership
Cardinal
instLE
Set.Elem
lt_or_ge
lt_aleph0
mk_le_iff_forall_finset_subset_card_le
Finset.eventually_all
Filter.Eventually.exists
lt_aleph0_iff_fintype
LE.le.trans_lt
Finset.card_le_card
Set.toFinset_card
mk_fintype
LE.le.trans
Nat.cast_le
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
instCharZero
Set.mem_iUnion_of_mem
mk_le_mk_of_subset
sum_le_sum
sum_const
lift_id
le_imp_le_of_le_of_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
mk_le_aleph0
le_refl
aleph0_mul_eq

---

← Back to Index