Documentation Verification Report

Divisibility

📁 Source: Mathlib/SetTheory/Cardinal/Divisibility.lean

Statistics

MetricCount
DefinitionsinstUniqueUnits
1
Theoremsdvd_of_le_of_aleph0_le, isPrimePow_iff, isUnit_iff, is_prime_iff, le_of_dvd, nat_coe_dvd_iff, nat_is_prime_iff, not_irreducible_of_aleph0_le, prime_of_aleph0_le
9
Total10

Cardinal

Definitions

NameCategoryTheorems
instUniqueUnits 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_le_of_aleph0_le 📖mathematicalCardinal
instLE
aleph0
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
mul_eq_right
isPrimePow_iff 📖mathematicalIsPrimePow
Cardinal
instCommMonoidWithZero
instLE
aleph0
instNatCast
Nat.instCommMonoidWithZero
Prime.isPrimePow
prime_of_aleph0_le
CanLift.prf
canLiftCardinalNat
not_le
isPrimePow_def
power_le_power_left
Prime.ne_zero
Nat.cast_one
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
instCharZero
LE.le.trans_lt
power_one
natCast_lt_aleph0
nat_is_prime_iff
isUnit_iff 📖mathematicalIsUnit
Cardinal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
instOne
eq_or_ne
not_isUnit_zero
instNontrivial
isUnit_iff_forall_dvd
mul_eq_one_iff_of_one_le
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
one_le_iff_ne_zero
zero_ne_one
NeZero.charZero_one
instCharZero
MulZeroClass.mul_zero
isUnit_one
is_prime_iff 📖mathematicalPrime
Cardinal
instCommMonoidWithZero
instLE
aleph0
instNatCast
Nat.Prime
le_or_gt
CanLift.prf
canLiftCardinalNat
not_le
instCharZero
le_of_dvd 📖mathematicalCardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
instLEmul_one
mul_le_mul_right
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
one_le_iff_ne_zero
MulZeroClass.mul_zero
nat_coe_dvd_iff 📖mathematicalCardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
instNatCast
natCast_lt_aleph0
mul_lt_aleph0_iff
MulZeroClass.zero_mul
instCharZero
MulZeroClass.mul_zero
CanLift.prf
canLiftCardinalNat
nat_is_prime_iff 📖mathematicalPrime
Cardinal
instCommMonoidWithZero
instNatCast
Nat.Prime
instCharZero
Nat.cast_one
lt_or_ge
mul_lt_aleph0_iff
CanLift.prf
canLiftCardinalNat
aleph0_le_mul_iff
mul_eq_zero
noZeroDivisors
zero_dvd_iff
dvd_of_le_of_aleph0_le
LE.le.trans
LT.lt.le
natCast_lt_aleph0
mul_comm
not_irreducible_of_aleph0_le 📖mathematicalCardinal
instLE
aleph0
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
irreducible_iff
not_and_or
mul_aleph0_eq
Unique.instSubsingleton
LT.lt.ne'
LT.lt.trans_le
one_lt_aleph0
prime_of_aleph0_le 📖mathematicalCardinal
instLE
aleph0
Prime
instCommMonoidWithZero
LT.lt.ne'
LT.lt.trans_le
aleph0_pos
isUnit_iff
one_lt_aleph0
eq_or_ne
mul_eq_zero
noZeroDivisors
le_of_dvd
max_def'
mul_eq_max'
LE.le.trans
le_total
mul_comm

---

← Back to Index