📁 Source: Mathlib/SetTheory/Cardinal/ENat.lean
gciENat
instCoeENat
ofENat
ofENatHom
toENat
toENatAux
aleph0_add_ofENat
aleph0_mul_ofENat
enat_gc
instCanLiftENatOfENatLeAleph0
lift_eq_ofENat
lift_le_ofENat
lift_lt_ofENat
lift_ofENat
nat_eq_ofENat
nat_le_ofENat
nat_lt_ofENat
ofENat_add
ofENat_add_aleph0
ofENat_eq_lift
ofENat_eq_nat
ofENat_eq_ofNat
ofENat_eq_one
ofENat_eq_zero
ofENat_inj
ofENat_injective
ofENat_le_aleph0
ofENat_le_lift
ofENat_le_nat
ofENat_le_ofENat
ofENat_le_ofENat_of_le
ofENat_le_ofNat
ofENat_le_one
ofENat_lt_aleph0
ofENat_lt_lift
ofENat_lt_nat
ofENat_lt_ofENat
ofENat_lt_ofENat_of_lt
ofENat_lt_ofNat
ofENat_mono
ofENat_mul
ofENat_mul_aleph0
ofENat_nat
ofENat_ofNat
ofENat_one
ofENat_pos
ofENat_strictMono
ofENat_toENat
ofENat_toENat_eq_self
ofENat_toENat_le
ofENat_top
ofENat_zero
ofNat_eq_ofENat
ofNat_le_ofENat
ofNat_lt_ofENat
one_eq_ofENat
one_le_ofENat
one_lt_ofENat
range_ofENat
toENatAux_eq_nat
toENatAux_eq_top
toENatAux_eq_zero
toENatAux_gc
toENatAux_le_nat
toENatAux_nat
toENatAux_ofENat
toENatAux_zero
toENat_comp_ofENat
toENat_congr
toENat_eq_iff_of_le_aleph0
toENat_eq_nat
toENat_eq_ofNat
toENat_eq_one
toENat_eq_top
toENat_eq_zero
toENat_injOn
toENat_le_iff_of_le_aleph0
toENat_le_iff_of_lt_aleph0
toENat_le_nat
toENat_le_ofNat
toENat_le_one
toENat_lift
toENat_lt_top
toENat_nat
toENat_ne_top
toENat_ofENat
toENat_strictMonoOn
zero_eq_ofENat
toNat_ofENat
Ideal.height_le_spanRank
Ideal.height_le_iff_exists_minimalPrimes
Ideal.exists_spanRank_eq_and_height_eq
natCast_lt_toENat_iff
Set.toENat_cardinalMk_subtype
toENat_eq_natCast_iff
Module.length_of_free
Submodule.spanRank_toENat_eq_iInf_encard
toENat_lt_natCast_iff
Ideal.height_le_spanRank_toENat_of_mem_minimal_primes
toNat_toENat
toENat_rank_span_set
Submodule.spanRank_toENat_eq_iInf_finset_card
continuum_toENat
toENat_le_natCast_iff
Set.toENat_cardinalMk
LinearIndepOn.encard_le_toENat_rank
aleph_toENat
Ideal.height_le_spanRank_toENat
natCast_eq_toENat_iff
Matroid.toENat_cRank_eq
natCast_le_toENat_iff
Module.length_eq_rank
Matroid.toENat_cRk_eq
Cardinal
instAdd
aleph0
instMul
mul_comm
GaloisConnection
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
partialOrder
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
instCommSemiringENat
OrderRingHom.instFunLike
CanLift
instLE
Set.ext_iff
lift
lift_le
Preorder.toLT
lift_lt
lift_natCast
lift_aleph0
instNatCast
ENat.instNatCast
Preorder.toLE
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
OrderRingHom.instRingHomClass
add_comm
instOfNatAtLeastTwo
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.cast_one
instZero
instZeroENat
Nat.cast_zero
StrictMono.injective
le_top
StrictMono.le_iff_le
Top.top
instTopENat
StrictMono.lt_iff_lt
Monotone
StrictMono.monotone
Distrib.toMul
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
aleph0_mul_aleph0
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
nat_mul_aleph0
StrictMono
WithTop.strictMono_iff
Nat.strictMono_cast
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
instCharZero
natCast_lt_aleph0
GaloisConnection.exists_eq_l
GaloisConnection.l_u_le
Set.range
Set.Iic
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.range_subset_iff
LE.le.lt_or_eq
CanLift.prf
canLiftCardinalNat
Set.mem_range_self
Function.extend_apply'
LE.le.not_gt
lt_or_ge
LE.le.trans
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
LT.lt.trans_le
Function.Injective.extend_apply
Nat.cast_injective
le_rfl
lift_mk_eq
Set.InjOn.eq_iff
StrictMonoOn.injOn
GaloisConnection.u_eq_top
Set.InjOn
le_total
map_natCast
StrictMonoOn
---
← Back to Index