Documentation Verification Report

Finite

πŸ“ Source: Mathlib/SetTheory/Cardinal/Finite.lean

Statistics

MetricCount
Definitionscard, card, equivFinOfCardPos
3
TheoremsnatCast_eq_toENat_iff, natCast_le_toENat_iff, natCast_lt_toENat_iff, toENat_eq_natCast_iff, toENat_le_natCast_iff, toENat_lt_natCast_iff, card_congr, card_eq_coe_fintype_card, card_eq_one_iff_unique, card_eq_top, card_eq_top_of_infinite, card_eq_zero_iff_empty, card_fun, card_image_of_injOn, card_image_of_injective, card_le_card_of_injective, card_le_one, card_le_one_iff_subsingleton, card_lt_top, card_lt_top_of_finite, card_ne_zero_iff_nonempty, card_plift, card_pos, card_prod, card_sum, card_ulift, one_le_card_iff_nonempty, one_lt_card, one_lt_card_iff_nontrivial, card_eq_nat_card, bijective_of_nat_card_le, bijective_of_nat_card_le, bijective_iff_injective_and_card, bijective_iff_surjective_and_card, card_congr, card_eq_card_finite_toFinset, card_eq_card_toFinset, card_eq_finsetCard, card_eq_fintype_card, card_eq_of_bijective, card_eq_of_equiv_fin, card_eq_one_iff_exists, card_eq_one_iff_unique, card_eq_two_iff, card_eq_two_iff', card_eq_zero, card_eq_zero_of_infinite, card_fin, card_fun, card_image_equiv, card_image_le, card_image_of_injOn, card_image_of_injective, card_le_card_of_injective, card_le_card_of_surjective, card_mono, card_ne_zero, card_of_isEmpty, card_of_subsingleton, card_pi, card_plift, card_pos, card_pos_iff, card_preimage_of_injOn, card_preimage_of_injective, card_prod, card_range_of_injective, card_sigma, card_subtype_true, card_sum, card_ulift, card_unique, card_univ, card_zmod, cast_card, finite_of_card_ne_zero, subtype_card, card_eq_zero, natCard_pos, card_prod_singleton, card_singleton_prod, natCard_graphOn, natCard_pos
83
Total86

Cardinal

Theorems

NameKindAssumesProvesValidatesDepends On
natCast_eq_toENat_iff πŸ“–mathematicalβ€”ENat
ENat.instNatCast
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
PartialOrder.toPreorder
partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
toENat
instNatCast
β€”le_antisymm_iff
toENat_le_natCast_iff
natCast_le_toENat_iff
natCast_le_toENat_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
partialOrder
instCommSemiringENat
OrderRingHom.instFunLike
toENat
instLE
instNatCast
β€”toENat_nat
toENat_le_iff_of_le_aleph0
natCast_le_aleph0
natCast_lt_toENat_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
partialOrder
instCommSemiringENat
OrderRingHom.instFunLike
toENat
instNatCast
β€”β€”
toENat_eq_natCast_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
PartialOrder.toPreorder
partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
toENat
ENat.instNatCast
instNatCast
β€”β€”
toENat_le_natCast_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
partialOrder
instCommSemiringENat
OrderRingHom.instFunLike
toENat
ENat.instNatCast
instLE
instNatCast
β€”β€”
toENat_lt_natCast_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
partialOrder
instCommSemiringENat
OrderRingHom.instFunLike
toENat
ENat.instNatCast
instNatCast
β€”β€”

ENat

Definitions

NameCategoryTheorems
card πŸ“–CompOp
42 mathmath: card_congr, SimpleGraph.vertexCoverNum_le_card_sub_one, card_le_card_of_injective, card_prod, Matrix.eRank_le_card_width, card_lt_top, Matrix.eRank_le_card_height, card_pos, one_lt_card_iff_nontrivial, card_image_of_injOn, card_eq_zero_iff_empty, one_le_card_iff_nonempty, card_le_one_iff_subsingleton, card_lt_top_of_finite, SimpleGraph.vertexCoverNum_top, Matrix.eRank_one, Set.encard_le_card, card_eq_top, SimpleGraph.vertexCoverNum_lt_card, Set.encard_univ, card_sum, card_eq_top_of_infinite, SubMulAction.ENat_card_ofStabilizer_add_one_eq, card_ulift, Module.length_finsupp, Set.encard_ne_add_one, card_eq_coe_fintype_card, MeasureTheory.Measure.count_univ, SubAddAction.ENat_card_ofStabilizer_add_zero_eq, card_plift, card_eq_one_iff_unique, card_fun, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, card_image_of_injective, card_coe_set_eq, Function.Injective.encard_range, Module.length_pi, ENNReal.tsum_const, one_lt_card, ENNReal.tsum_one, card_le_one, card_eq_coe_natCard

Theorems

NameKindAssumesProvesValidatesDepends On
card_congr πŸ“–mathematicalβ€”cardβ€”Cardinal.toENat_congr
card_eq_coe_fintype_card πŸ“–mathematicalβ€”card
ENat
instNatCast
Fintype.card
β€”Cardinal.mk_fintype
map_natCast
OrderRingHom.instRingHomClass
card_eq_one_iff_unique πŸ“–mathematicalβ€”card
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Unique
β€”unique_iff_subsingleton_and_nonempty
le_antisymm_iff
card_le_one_iff_subsingleton
one_le_card_iff_nonempty
card_eq_top πŸ“–mathematicalβ€”card
Top.top
ENat
instTopENat
Infinite
β€”β€”
card_eq_top_of_infinite πŸ“–mathematicalβ€”card
Top.top
ENat
instTopENat
β€”β€”
card_eq_zero_iff_empty πŸ“–mathematicalβ€”card
ENat
instZeroENat
IsEmpty
β€”Cardinal.mk_eq_zero_iff
card_fun πŸ“–mathematicalβ€”card
ENat
instPow
β€”isEmpty_or_nonempty
card_eq_coe_fintype_card
Fintype.card_unique
Nat.cast_one
card_eq_zero_iff_empty
epow_zero
finite_or_infinite
Fintype.card_pi
Finset.prod_const
Nat.cast_pow
card_eq_top_of_infinite
Function.infinite_of_right
top_epow
one_le_iff_ne_zero
one_le_card_iff_nonempty
lt_trichotomy
lt_one_iff_eq_zero
zero_epow_top
one_epow
le_antisymm
card_le_one_iff_subsingleton
Eq.le
Eq.ge
epow_top
card_eq_top
Pi.infinite_of_left
one_lt_card_iff_nontrivial
card_image_of_injOn πŸ“–mathematicalSet.InjOncard
Set.Elem
Set.image
β€”card_congr
card_image_of_injective πŸ“–mathematicalβ€”card
Set.Elem
Set.image
β€”card_image_of_injOn
Function.Injective.injOn
card_le_card_of_injective πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
card
β€”card_ulift
GaloisConnection.monotone_u
GaloisCoinsertion.gc
Cardinal.lift_mk_le_lift_mk_of_injective
card_le_one πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
card
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
card_le_one_iff_subsingleton πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
card
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Cardinal.le_one_iff_subsingleton
card_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
card
Top.top
instTopENat
Finite
β€”β€”
card_lt_top_of_finite πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
card
Top.top
instTopENat
β€”β€”
card_ne_zero_iff_nonempty πŸ“–β€”β€”β€”β€”β€”
card_plift πŸ“–mathematicalβ€”cardβ€”card_congr
card_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
card
β€”β€”
card_prod πŸ“–mathematicalβ€”card
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Cardinal.mk_prod
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
OrderRingHom.instRingHomClass
Cardinal.toENat_lift
card_sum πŸ“–mathematicalβ€”card
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Cardinal.mk_sum
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
OrderRingHom.instRingHomClass
Cardinal.toENat_lift
card_ulift πŸ“–mathematicalβ€”cardβ€”card_congr
one_le_card_iff_nonempty πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
card
β€”β€”
one_lt_card πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
card
β€”β€”
one_lt_card_iff_nontrivial πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
card
Nontrivial
β€”Cardinal.one_lt_iff_nontrivial
Nat.cast_one
Cardinal.natCast_lt_toENat_iff

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_nat_card πŸ“–mathematicalβ€”card
Nat.card
β€”Cardinal.mk_toNat_eq_card

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_of_nat_card_le πŸ“–mathematicalNat.cardFunction.Bijectiveβ€”Nat.bijective_iff_injective_and_card
LE.le.antisymm
Nat.card_le_card_of_injective

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_of_nat_card_le πŸ“–mathematicalNat.cardFunction.Bijectiveβ€”Nat.bijective_iff_surjective_and_card
LE.le.antisymm
Nat.card_le_card_of_surjective

Nat

Definitions

NameCategoryTheorems
card πŸ“–CompOp
428 mathmath: Subgroup.card_map_of_injective, FiniteField.Extension.frob_apply, Subgroup.card_eq_card_quotient_mul_card_subgroup, orderOf_lt_card, AddSubmonoid.addOrderOf_le_card, IsOfFinOrder.natCard_powers_le_orderOf, Subgroup.index_center_le_pow, orderOf_eq_card_of_forall_mem_zpowers, card_le_card_of_injective, IsGalois.card_aut_eq_finrank, MulAction.IsBlock.ncard_dvd_card, CategoryTheory.PreGaloisCategory.card_fiber_eq_of_iso, card_units, Algebra.PreSubmersivePresentation.card_relations_le_card_vars_of_isFinite, Set.natCard_smul_setβ‚€, NumberField.InfinitePlace.nat_card_stabilizer_eq_one_or_two, NumberField.InfinitePlace.isUnramified_iff_card_stabilizer_eq_one, AddSubgroup.IsComplement.card_mul_card, IsCyclic.val_mulAutMulEquiv_apply, Subgroup.card_top, AddSubgroup.card_map_of_injective, AddAction.IsBlock.ncard_block_add_ncard_orbit_eq, AddSubgroup.card_comap_dvd_of_injective, cyclotomicCharacter.toZModPow, IsZGroup.coprime_commutator_index, AlgHom.IsArithFrobAt.mk_apply, Field.finSepDegree_eq_of_isAlgClosed, IsGalois.card_fixingSubgroup_eq_finrank, Set.Finite.card_lt_card, SubMulAction.nat_card_ofStabilizer_add_one_eq, Sylow.card_dvd_index, ModularForm.norm_eq_zero_iff, CategoryTheory.PreGaloisCategory.card_aut_le_card_fiber_of_connected, card_zmultiples, AddSubgroup.card_eq_iff_eq_top, AddSubgroup.IsComplement.card_right, Finite.card_subtype_le, IsCyclic.monoidHom_mulEquiv_rootsOfUnity, card_eq_finsetCard, card_dvd_exponent_pow_rank, NumberField.InfinitePlace.card_stabilizer, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, IsAddCyclic.index_nsmulAddMonoidHom_range, Subgroup.exists_left_transversal_of_le, Subgroup.one_lt_card_iff_ne_bot, Subgroup.card_le_of_le, AddSubgroup.card_dvd_of_injective, Subgroup.card_eq_one, AddSubgroup.card_eq_card_quotient_mul_card_addSubgroup, Subgroup.IsComplement'.index_eq_card, IsAddCyclic.exists_ofOrder_eq_natCard, card_comm_eq_card_conjClasses_mul_card, card_le_card_of_surjective, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, orderOf_eq_card_of_forall_mem_powers, card_pos, Subgroup.card_bot, IteratedWreathProduct.card, card_of_subsingleton, orderOf_le_card, DihedralGroup.card_commute_odd, RegularWreathProduct.card, Equiv.Perm.OnCycleFactors.nat_card_range_toPermHom, CategoryTheory.PreGaloisCategory.card_fiber_coprod_eq_sum, card_eq_zero_of_infinite, Subgroup.rank_closure_finite_le_nat_card, tendsto_card_div_pow_atTop_volume, IsPGroup.coprime_card_of_ne, AddSubgroup.card_range_dvd, card_perm, MulAction.index_stabilizer_of_transitive, CommGroup.card_monoidHom_of_hasEnoughRootsOfUnity, isCyclic_iff_exists_natCard_le_orderOf, AddSubgroup.card_subtype, IsPGroup.iff_card, MonoidHom.not_dvd_card_ker_transferSylow, Set.natCard_add_le, HasEnoughRootsOfUnity.natCard_rootsOfUnity, Set.ncard_le_card, ZLattice.covolume.tendsto_card_div_pow, AddGroup.is_simple_iff_prime_card, FiniteField.instIsSplittingFieldExtensionHSubPolynomialHPowNatXCard, FiniteField.algebraMap_trace_eq_sum_pow, Subgroup.index_ker, Monoid.minOrder_le_natCard, Matrix.card_GL_field, Subgroup.eq_bot_iff_card, SimpleGraph.ConnectedComponent.card_le_card_of_le, Set.ncard_lt_card, Set.powersetCard.nontrivial_iff, SubAddAction.ofFixingAddSubgroup.append_left, AddSubgroup.index_ker, pow_mod_natCard, card_sum, IsPGroup.exists_card_eq, Projectivization.card'', SemidirectProduct.card, Polynomial.Gal.prime_degree_dvd_card, Ideal.card_stabilizer_eq, card_eq_two_iff', Subgroup.index_mul_card, AddSubgroup.card_le_of_le, orderOf_dvd_natCard, Finset.card_preimage_eq_sum_card_image_eq, Subgroup.card_commutator_le_of_finite_commutatorSet, AddSubgroup.index_dvd_card, Set.ncard_compl, card_image_of_injective, Subgroup.card_dvd_of_injective, NumberField.InfinitePlace.even_card_aut_of_not_isUnramified, Set.card_union_le, AddSubgroup.card_add_eq_card_addSubgroup_add_card_quotient, Set.powersetCard.eq_empty_iff, IsCyclic.exists_ofOrder_eq_natCard, Sylow.not_dvd_card_commutator_or_not_dvd_index_commutator, AddGroup.isAddCyclic_prod_iff, card_commutatorSet_closureCommutatorRepresentatives, IsCyclic.val_inv_mulAutMulEquiv_apply, IsOfFinAddOrder.natCard_multiples_le_addOrderOf, IsAddCyclic.image_range_card, Equiv.Perm.card_isConj_eq, AlgHom.IsArithFrobAt.apply_of_pow_eq_one, FiniteField.pow_finrank_eq_natCard, Finite.card_le_of_surjective, card_preimage_of_injOn, AddSubgroup.rank_closure_finite_le_nat_card, Subgroup.IsComplement'.card_mul, SimpleGraph.isTree_iff_connected_and_card, Subgroup.card_dvd_of_surjective, AddSubgroup.card_dvd_of_le, Subgroup.card_range_dvd, FiniteField.algebraMap_norm_eq_pow, card_nsmul_eq_zero', Finite.card_eq_zero_iff, CategoryTheory.PreGaloisCategory.lt_card_fiber_of_mono_of_notIso, coprime_card_of_isCyclic_prod, SubMulAction.nat_card_ofStabilizer_eq, AddSubgroup.card_mul_index, FiniteField.algebraMap_norm_eq_prod_pow, Subgroup.rank_commutator_le_card, card_univ, AddSubgroup.card_addSubgroup_dvd_card, card_of_isEmpty, Ideal.ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn, card_coe_set_eq, IsGalois.IntermediateField.AdjoinSimple.card_aut_eq_finrank, Submodule.card_quotient_mul_card_quotient, AddCircle.card_addOrderOf_eq_totient, card_pos_iff, IsAddCyclic.card_nsmulAddMonoidHom_ker, card_submonoidPowers, Finite.card_sum, Set.natCard_pos, Subgroup.card_map_dvd, IsPGroup.card_modEq_card_fixedPoints, IsCyclic.card_powMonoidHom_ker, Set.sum_indicator_eventually_eq_card, Finite.card_subtype_lt, ModN.natCard_eq, isCyclic_iff_exists_orderOf_eq_natCard, Subgroup.relIndex_bot_left, addOrderOf_eq_card_of_forall_mem_multiples, AddSubgroup.index_mul_card, Finite.card_image_le, IsPGroup.nontrivial_iff_card, pow_card_eq_one', IsPGroup.card_orbit, Set.ncard_add_ncard_compl, Subgroup.card_commutator_dvd_index_center_pow, bijective_iff_injective_and_card, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, Set.Nonempty.natCard_pos, Submodule.natAbs_det_equiv, AddSubgroup.card_le_one_iff_eq_bot, addOrderOf_dvd_natCard, addOrderOf_le_card, card_eq_of_equiv_fin, Set.natCard_smul_set, Projectivization.card, Finite.card_pos, FiniteField.splits_X_pow_nat_card_sub_X, ZLattice.covolume.tendsto_card_le_div', subtype_card, SubMulAction.nat_card_ofStabilizer_eq_add_one, DihedralGroup.nat_card, Set.card_singleton_prod, AlgHom.natCard_of_splits, SubAddAction.nat_card_ofStabilizer_eq, Module.natCard_eq_pow_finrank, card_addSubmonoidMultiples, SimpleGraph.Connected.card_vert_le_card_edgeSet_add_one, Subgroup.index_bot, Set.card_prod_singleton, card_eq_one_iff_unique, AddSubgroup.card_top, Subgroup.IsComplement.card_mul_card, card_dvd_exponent_pow_rank', IsCyclic.card_mulAut, card_fun, NumberField.InfinitePlace.isRamified_iff_card_stabilizer_eq_two, Ideal.card_norm_le_eq_card_norm_le_add_one, CategoryTheory.PreGaloisCategory.card_hom_le_card_fiber_of_connected, card_eq_card_units_add_one, card_dvd_exponent_nsmul_rank, bijective_iff_surjective_and_card, tprod_const, IsAddCyclic.iff_exponent_eq_card, card_mono, Set.natCard_inv, RootPairing.EmbeddedG2.card_index_eq_twelve, Function.Surjective.card_le_card_add_one_iff, Group.is_simple_iff_prime_card, card_image_of_injOn, isNilpotent_of_finite_tfae, Subgroup.card_le_card_group, addOrderOf_eq_card_of_forall_mem_zmultiples, Finite.card_le_one_iff_subsingleton, isZGroup_iff_exists_mulEquiv, card_eq, SimpleGraph.Colorable.card_le_of_pairwise_adj, AddMonoid.le_minOrder_iff_forall_addSubgroup, card_congr, IntermediateField.card_algHom_adjoin_integral, AddAction.index_stabilizer_of_transitive, AddSubgroup.card_map_dvd, Subgroup.IsComplement.card_right, IsCyclic.image_range_card, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, IsCyclic.index_powMonoidHom_ker, Sylow.card_eq_multiplicity, MeasureTheory.IsAddFundamentalDomain.measure_eq_card_smul_of_vadd_ae_eq_self, AlternatingGroup.isMultiplyPretransitive, addOrderOf_eq_card_of_zmultiples_eq_top, Set.natCard_vadd_set, Projectivization.card_of_finrank, cast_card, ZLattice.covolume.tendsto_card_div_pow', Subgroup.card_subgroup_dvd_card, AddGroup.exponent_dvd_nat_card, Set.natCard_neg, card_plift, Finite.card_pos_iff, card_eq_two_iff, IsCyclic.iff_exponent_eq_card, Subgroup.card_quotient_dvd_card, SubMulAction.ofFixingSubgroup.append_left, LinearMap.equivariantProjection_apply, Monoid.le_minOrder_iff_forall_subgroup, FiniteField.natCard_extension, MulAction.IsMultiplyPretransitive.index_of_fixingSubgroup_eq, AddAction.IsBlock.ncard_dvd_card, Module.finrank_eq_nat_card_basis, AddSubgroup.addOrderOf_dvd_natCard, card_sigma, ZLattice.covolume.tendsto_card_le_div, Subgroup.IsComplement.card_left, Projectivization.card', AlgHom.IsArithFrobAt.card_pos, AddSubgroup.card_bot, IsCyclic.index_powMonoidHom_range, card_zpowers, IntermediateField.finrank_fixedField_eq_card, IsPrimitiveRoot.card_quotient_toInteger_sub_one, two_mul_nat_card_alternatingGroup, NumberField.Ideal.tendsto_norm_le_div_atTop, Ideal.card_inertia_eq_ramificationIdxIn, Subgroup.card_dvd_of_le, orderOf_eq_card_of_zpowers_eq_top, NumberField.InfinitePlace.not_isUnramified_iff_card_stabilizer_eq_two, Group.exponent_dvd_nat_card, Subgroup.isComplement'_iff_card_mul_and_disjoint, card_commutator_closureCommutatorRepresentatives, card_pi, FiniteField.natCard_algHom_of_finrank_dvd, IsZGroup.exponent_eq_card, IsCyclic.exponent_eq_card, AlgHom.natCard_of_powerBasis, Subgroup.index_eq_card, MulChar.card_eq_card_units_of_hasEnoughRootsOfUnity, AddSubgroup.one_lt_card_iff_ne_bot, NumberField.InfinitePlace.even_nat_card_aut_of_not_isUnramified, card_prod, cyclotomicCharacter.toZModPow_toFun, Subgroup.exists_right_transversal_of_le, card_sylow_modEq_one, IsSimpleGroup.prime_card, MulAction.IsBlock.ncard_block_mul_ncard_orbit_eq, Finite.one_lt_card, IsSimpleAddGroup.prime_card, IsAddKleinFour.card_four, card_eq_card_toFinset, Set.natCard_mul_le, card_image_equiv, GaloisField.card, isAddCyclic_iff_exists_addOrderOf_eq_natCard, Module.Basis.SmithNormalForm.toAddSubgroup_index_eq_pow_mul_prod, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, ModularForm.coe_norm, Ideal.card_stabilizer_eq_card_inertia_mul_finrank, IsGalois.of_separable_splitting_field_aux, Set.eq_univ_iff_ncard, Finite.card_le_of_injective, MeasureTheory.IsFundamentalDomain.measure_eq_card_smul_of_smul_ae_eq_self, DihedralGroup.card_conjClasses_odd, SimpleGraph.odd_ncard_oddComponents, Finite.card_le_of_embedding, CommGroup.is_simple_iff_isCyclic_and_prime_card, Set.powersetCard.card, card_unique, Set.natCard_graphOn, mod_natCard_nsmul, card_ulift, QuotientGroup.card_preimage_mk, AddSubgroup.index_range, CommGroup.is_simple_iff_prime_card, alternatingGroup.isMultiplyPretransitive, DirichletCharacter.card_eq_totient_of_hasEnoughRootsOfUnity, IsCyclic.mulAutMulEquiv_symm_apply_apply, AddCommGroup.is_simple_iff_prime_card, AddSubgroup.index_eq_card, ZLattice.covolume.tendsto_card_le_div'', MonoidHom.FixedPointFree.odd_card_of_involutive, card_zmod, mod_natCard_zsmul, isAddCyclic_iff_exists_natCard_le_addOrderOf, Finite.card_option, Subgroup.card_le_one_iff_eq_bot, tendsto_card_div_pow_atTop_volume', AddSubgroup.exists_right_transversal_of_le, Subgroup.card_subtype, SubAddAction.nat_card_ofStabilizer_add_zero_eq, Ideal.ncard_primesOver_mul_card_inertia_mul_finrank, card_algHom_le_finrank, commProb_def', Set.natCard_div_le, Subgroup.card_mul_eq_card_subgroup_mul_card_quotient, card_image_le, not_dvd_card_sylow, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, rank_closureCommutatorRepresentatives_le, AddSubgroup.card_eq_one, AddSubgroup.eq_bot_iff_card, Subgroup.orderOf_le_card, tsum_const, Subgroup.relIndex_ker, IsGaloisGroup.card_eq_finrank, IsGalois.tfae, Subfield.card_bot, card_eq_one_iff_exists, card_dvd_exponent_nsmul_rank', Set.ncard_univ, Finite.card_eq, NumberField.InfinitePlace.even_card_aut_of_not_isUnramifiedIn, AddSubgroup.card_le_card_addGroup, Projectivization.card_of_finrank_two, Group.isCyclic_prod_iff, Subgroup.orderOf_dvd_natCard, MvPolynomial.ringKrullDim_of_isNoetherianRing, IsCyclic.card_powMonoidHom_range, Subgroup.card_mul_index, Finite.card_range_le, AddSubgroup.exists_left_transversal_of_le, Group.nat_card_center_add_sum_card_noncenter_eq_card, totient_eq_card_lt_and_coprime, Sylow.card_eq_card_quotient_normalizer, Field.finSepDegree_eq_of_adjoin_splits, IsGaloisGroup.card_fixingSubgroup_eq_finrank, card_eq_of_bijective, IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup, Subgroup.IsComplement.card_mul, AddSubgroup.IsComplement.card_left, Set.Infinite.card_eq_zero, Subgroup.index_range, IsAddCyclic.index_nsmulAddMonoidHom_ker, nat_card_alternatingGroup, ZLattice.covolume.tendsto_card_div_pow'', card_preimage_of_injective, IsKleinFour.card_four, Subgroup.commProb_quotient_le, AddSubgroup.relIndex_ker, Polynomial.Gal.card_of_separable, Subgroup.relIndex_dvd_card, zpow_mod_natCard, AddSubgroup.card_quotient_dvd_card, FiniteField.algebraMap_norm_eq_pow_sum, AddSubgroup.relIndex_dvd_card, AddSubgroup.addOrderOf_le_card, Set.ncard_range_of_injective, FiniteField.natCard_algEquiv_extension, card_fin, commProb_def, Subgroup.nat_card_centralizer_nat_card_stabilizer, card_eq_zero, Finite.one_lt_card_iff_nontrivial, AddMonoid.minOrder_le_natCard, Fintype.card_eq_nat_card, Group.sum_card_conj_classes_eq_card, SlashInvariantForm.coe_norm, inv_card_commutator_le_commProb, Equiv.Perm.card_isConj_mul_eq, Sylow.card_eq_index_normalizer, card_eq_fintype_card, Equiv.Perm.nat_card_centralizer, Subgroup.card_eq_iff_eq_top, AddSubgroup.index_bot, Submonoid.orderOf_le_card, IsAddCyclic.exponent_eq_card, IsPGroup.card_eq_or_dvd, Set.natCard_sub_le, coprime_card_of_isAddCyclic_prod, AlgHom.IsArithFrobAt.restrict_apply, natCard_units_lt, card_range_of_injective, FDRep.simple_iff_char_is_norm_one, ENat.card_eq_coe_natCard, AddSubgroup.card_dvd_of_surjective, AddSubgroup.relIndex_bot_left, Sylow.card_coprime_index, MulAction.IsMultiplyPretransitive.index_of_fixingSubgroup_mul, Submodule.card_eq_card_quotient_mul_card, card_subtype_true, IsAddCyclic.card_nsmulAddMonoidHom_range, card_linearIndependent, Submodule.natAbs_det_basis_change, Submodule.cardQuot_apply, Subgroup.card_comap_dvd_of_injective, card_eq_card_finite_toFinset, Subgroup.index_dvd_card
equivFinOfCardPos πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_iff_injective_and_card πŸ“–mathematicalβ€”Function.Bijective
card
β€”Function.Bijective.eq_1
card_eq_fintype_card
Fintype.bijective_iff_injective_and_card
bijective_iff_surjective_and_card πŸ“–mathematicalβ€”Function.Bijective
card
β€”Function.Bijective.eq_1
card_eq_fintype_card
Fintype.bijective_iff_surjective_and_card
card_congr πŸ“–mathematicalβ€”cardβ€”Cardinal.toNat_congr
card_eq_card_finite_toFinset πŸ“–mathematicalβ€”card
Set.Elem
Finset.card
Set.Finite.toFinset
β€”Set.Finite.mem_toFinset
card_eq_card_toFinset πŸ“–mathematicalβ€”card
Set.Elem
Finset.card
Set.toFinset
β€”Set.mem_toFinset
card_eq_finsetCard πŸ“–mathematicalβ€”card
Finset
SetLike.instMembership
Finset.instSetLike
Finset.card
β€”card_eq_fintype_card
Fintype.card_coe
card_eq_fintype_card πŸ“–mathematicalβ€”card
Fintype.card
β€”Cardinal.mk_toNat_eq_card
card_eq_of_bijective πŸ“–mathematicalFunction.Bijectivecardβ€”card_congr
card_eq_of_equiv_fin πŸ“–mathematicalβ€”cardβ€”card_eq_fintype_card
Fintype.card_fin
card_congr
card_eq_one_iff_exists πŸ“–mathematicalβ€”cardβ€”card_eq_one_iff_unique
card_eq_one_iff_unique πŸ“–mathematicalβ€”cardβ€”Cardinal.toNat_eq_one_iff_unique
card_eq_two_iff πŸ“–mathematicalβ€”card
Set
Set.instInsert
Set.instSingletonSet
Set.univ
β€”instAtLeastTwoHAddOfNat
Cardinal.toNat_eq_ofNat
Cardinal.mk_eq_two_iff
card_eq_two_iff' πŸ“–mathematicalβ€”card
ExistsUnique
β€”instAtLeastTwoHAddOfNat
Cardinal.toNat_eq_ofNat
Cardinal.mk_eq_two_iff'
card_eq_zero πŸ“–mathematicalβ€”card
IsEmpty
Infinite
β€”β€”
card_eq_zero_of_infinite πŸ“–mathematicalβ€”cardβ€”Cardinal.mk_toNat_of_infinite
card_fin πŸ“–mathematicalβ€”cardβ€”card_eq_fintype_card
Fintype.card_fin
card_fun πŸ“–mathematicalβ€”card
Monoid.toNatPow
instMonoid
β€”card_pi
Finset.prod_const
Finset.card_univ
card_eq_fintype_card
card_image_equiv πŸ“–mathematicalβ€”card
Set.Elem
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”card_congr
card_image_le πŸ“–mathematicalβ€”card
Set.Elem
Set.image
β€”Set.Finite.to_subtype
card_le_card_of_surjective
Set.imageFactorization_surjective
card_image_of_injOn πŸ“–mathematicalSet.InjOncard
Set.Elem
Set.image
β€”Set.finite_or_infinite
card_eq_fintype_card
Set.card_image_of_inj_on
Set.Infinite.to_subtype
Set.Infinite.image
card_eq_zero_of_infinite
card_image_of_injective πŸ“–mathematicalβ€”card
Set.Elem
Set.image
β€”card_image_of_injOn
Function.Injective.injOn
card_le_card_of_injective πŸ“–mathematicalβ€”cardβ€”Cardinal.toNat_lift
Cardinal.toNat_le_toNat
Cardinal.lift_mk_le_lift_mk_of_injective
card_le_card_of_surjective πŸ“–mathematicalβ€”cardβ€”Cardinal.mk_le_of_surjective
ULift.map_surjective
Cardinal.toNat_lift
Cardinal.toNat_le_toNat
card_mono πŸ“–mathematicalSet
Set.instHasSubset
card
Set.Elem
β€”Cardinal.toNat_le_toNat
Cardinal.mk_le_mk_of_subset
Set.Finite.lt_aleph0
card_ne_zero πŸ“–mathematicalβ€”Finiteβ€”β€”
card_of_isEmpty πŸ“–mathematicalβ€”cardβ€”Cardinal.mk_eq_zero
Cardinal.zero_toNat
card_of_subsingleton πŸ“–mathematicalβ€”cardβ€”card_eq_fintype_card
Fintype.card_ofSubsingleton
card_pi πŸ“–mathematicalβ€”card
Finset.prod
instCommMonoid
Finset.univ
β€”Finset.prod_congr
Cardinal.mk_pi
Cardinal.prod_eq_of_fintype
Cardinal.toNat_lift
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
card_plift πŸ“–mathematicalβ€”cardβ€”card_congr
card_pos πŸ“–mathematicalβ€”cardβ€”card_pos_iff
card_pos_iff πŸ“–mathematicalβ€”card
Finite
β€”β€”
card_preimage_of_injOn πŸ“–mathematicalSet.InjOn
Set.preimage
Set
Set.instHasSubset
Set.range
card
Set.Elem
β€”card_image_of_injOn
Set.image_preimage_eq_iff
card_preimage_of_injective πŸ“–mathematicalSet
Set.instHasSubset
Set.range
card
Set.Elem
Set.preimage
β€”card_preimage_of_injOn
Function.Injective.injOn
card_prod πŸ“–mathematicalβ€”cardβ€”Cardinal.mk_prod
Cardinal.toNat_mul
Cardinal.toNat_lift
card_range_of_injective πŸ“–mathematicalβ€”card
Set.Elem
Set.range
β€”card_preimage_of_injective
le_rfl
Set.preimage_range
card_univ
card_sigma πŸ“–mathematicalFinitecard
Finset.sum
instAddCommMonoid
Finset.univ
β€”card_eq_fintype_card
Finset.sum_congr
Fintype.card_sigma
card_subtype_true πŸ“–mathematicalβ€”cardβ€”card_congr
card_sum πŸ“–mathematicalβ€”cardβ€”card_eq_fintype_card
Fintype.card_sum
card_ulift πŸ“–mathematicalβ€”cardβ€”card_congr
card_unique πŸ“–mathematicalβ€”cardβ€”β€”
card_univ πŸ“–mathematicalβ€”card
Set.Elem
Set.univ
β€”card_congr
card_zmod πŸ“–mathematicalβ€”card
ZMod
β€”card_eq_zero_of_infinite
Int.infinite
card_eq_fintype_card
ZMod.card
cast_card πŸ“–mathematicalβ€”Cardinal
Cardinal.instNatCast
card
β€”card.eq_1
Cardinal.cast_toNat_of_lt_aleph0
Cardinal.lt_aleph0_of_finite
finite_of_card_ne_zero πŸ“–mathematicalβ€”Finiteβ€”card_ne_zero
subtype_card πŸ“–mathematicalFinset
Finset.instMembership
card
Finset.card
β€”Fintype.subtype_card
Fintype.card_eq_nat_card

Set

Theorems

NameKindAssumesProvesValidatesDepends On
card_prod_singleton πŸ“–mathematicalβ€”Nat.card
Elem
SProd.sprod
Set
instSProd
instSingletonSet
β€”prod_singleton
Nat.card_image_of_injective
Prod.mk_left_injective
card_singleton_prod πŸ“–mathematicalβ€”Nat.card
Elem
SProd.sprod
Set
instSProd
instSingletonSet
β€”singleton_prod
Nat.card_image_of_injective
Prod.mk_right_injective
natCard_graphOn πŸ“–mathematicalβ€”Nat.card
Elem
graphOn
β€”Nat.card_image_of_injOn
fst_injOn_graph
image_fst_graphOn
natCard_pos πŸ“–mathematicalβ€”Nat.card
Elem
Nonempty
β€”Nat.instCanonicallyOrderedAdd
Finite.to_subtype

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_zero πŸ“–mathematicalSet.InfiniteNat.card
Set.Elem
β€”Nat.card_eq_zero_of_infinite
to_subtype

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
natCard_pos πŸ“–mathematicalSet.NonemptyNat.card
Set.Elem
β€”Set.natCard_pos

---

← Back to Index