Documentation Verification Report

Free

📁 Source: Mathlib/SetTheory/Cardinal/Free.lean

Statistics

MetricCount
DefinitionsFree
1
Theoremsmk_abelianization_le, mk_freeAbelianGroup, mk_freeAddGroup, mk_freeAddMonoid, mk_freeCommRing, mk_freeGroup, mk_freeMonoid, mk_freeRing, instCountableFreeAbelianGroup, instCountableFreeAddGroup, instCountableFreeAddMonoid, instCountableFreeCommRing, instCountableFreeGroup, instCountableFreeMonoid, instCountableFreeRing, instInfiniteFreeAbelianGroupOfNonempty, instInfiniteFreeAddGroupOfNonempty, instInfiniteFreeAddMonoidOfNonempty, instInfiniteFreeCommRing, instInfiniteFreeGroupOfNonempty, instInfiniteFreeMonoidOfNonempty, instInfiniteFreeRing, nonempty_commRing, nonempty_commRing_iff, nonempty_commSemiring_iff, nonempty_ring_iff, nonempty_semiring_iff
27
Total28

Cardinal

Theorems

NameKindAssumesProvesValidatesDepends On
mk_abelianization_le 📖mathematicalCardinal
instLE
Abelianization
mk_le_of_surjective
Quotient.mk_surjective
mk_freeAbelianGroup 📖mathematicalFreeAbelianGroup
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
mk_congr
mk_finsupp_lift_of_infinite'
Int.infinite
lift_uzero
mk_eq_aleph0
instCountableInt
lift_aleph0
mk_freeAddGroup 📖mathematicalFreeAddGroup
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
le_antisymm
LE.le.trans_eq
mk_le_of_injective
FreeAddGroup.toWord_injective
Nat.instAtLeastTwoHAddOfNat
mk_list_eq_max_mk_aleph0
mk_prod
lift_uzero
mk_fintype
lift_ofNat
lt_or_ge
max_eq_right
LT.lt.le
max_eq_right_iff
mul_lt_aleph0
natCast_lt_aleph0
max_eq_left
LE.le.trans
le_mul_right
two_ne_zero
CharZero.NeZero.two
instCharZero
mul_eq_left
natCast_le_aleph0
OfNat.ofNat_ne_zero
max_le
FreeAddGroup.of_injective
instInfiniteFreeAddGroupOfNonempty
mk_freeAddMonoid 📖mathematicalFreeAddMonoid
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
mk_list_eq_max_mk_aleph0
mk_freeCommRing 📖mathematicalFreeCommRing
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
isEmpty_or_nonempty
mk_eq_aleph0
instCountableFreeAbelianGroup
Finite.to_countable
Finite.of_fintype
instInfiniteFreeAbelianGroupOfNonempty
mk_eq_zero
sup_of_le_right
canonicallyOrderedAdd
mk_freeAbelianGroup
mk_multiset_of_nonempty
sup_of_le_left
mk_freeGroup 📖mathematicalFreeGroup
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
le_antisymm
LE.le.trans_eq
mk_le_of_injective
FreeGroup.toWord_injective
Nat.instAtLeastTwoHAddOfNat
mk_list_eq_max_mk_aleph0
mk_prod
lift_uzero
mk_fintype
lift_ofNat
lt_or_ge
max_eq_right
LT.lt.le
mul_lt_aleph0
natCast_lt_aleph0
max_eq_left
LE.le.trans
le_mul_right
two_ne_zero
CharZero.NeZero.two
instCharZero
mul_eq_left
natCast_le_aleph0
max_le
FreeGroup.of_injective
instInfiniteFreeGroupOfNonempty
mk_freeMonoid 📖mathematicalFreeMonoid
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
mk_list_eq_max_mk_aleph0
mk_freeRing 📖mathematicalFreeRing
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
aleph0
isEmpty_or_nonempty
mk_eq_aleph0
instCountableFreeAbelianGroup
instCountableFreeMonoid
Encodable.countable
instInfiniteFreeAbelianGroupOfNonempty
mk_eq_zero
sup_of_le_right
canonicallyOrderedAdd
mk_freeAbelianGroup
mk_freeMonoid
sup_of_le_left

SimpleGraph

Definitions

NameCategoryTheorems
Free 📖MathDef
19 mathmath: isExtremal_top_free_iff_isTuranMaximal, free_congr_left, free_of_colorable, free_bot, isExtremal_free_iff, not_free, isExtremal_top_free_turanGraph, extremalNumber_of_fintypeCard_eq, free_congr_right, free_killCopies, free_congr, copyCount_eq_zero, killCopies_eq_left, lt_extremalNumber_iff, labelledCopyCount_eq_zero, lt_extremalNumber_iff_of_nonneg, exists_isExtremal_free, card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, cliqueFree_iff_top_free

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instCountableFreeAbelianGroup 📖mathematicalCountable
FreeAbelianGroup
Quotient.countable
instCountableFreeGroup
instCountableFreeAddGroup 📖mathematicalCountable
FreeAddGroup
Quotient.countable
List.countable
instCountableProd
Bool.countable
instCountableFreeAddMonoid 📖mathematicalCountable
FreeAddMonoid
List.countable
instCountableFreeCommRing 📖mathematicalCountable
FreeCommRing
instCountableFreeAbelianGroup
Multiset.countable
instCountableFreeGroup 📖mathematicalCountable
FreeGroup
Quotient.countable
List.countable
instCountableProd
Bool.countable
instCountableFreeMonoid 📖mathematicalCountable
FreeMonoid
List.countable
instCountableFreeRing 📖mathematicalCountable
FreeRing
Quotient.countable
instCountableFreeGroup
instCountableFreeMonoid
instInfiniteFreeAbelianGroupOfNonempty 📖mathematicalInfinite
FreeAbelianGroup
Equiv.infinite_iff
Finsupp.infinite_of_right
Int.infinite
instInfiniteFreeAddGroupOfNonempty 📖mathematicalInfinite
FreeAddGroup
Infinite.of_surjective
instInfiniteNat
FreeAddGroup.norm_surjective
instInfiniteFreeAddMonoidOfNonempty 📖mathematicalInfinite
FreeAddMonoid
instInfiniteListOfNonempty
instInfiniteFreeCommRing 📖mathematicalInfinite
FreeCommRing
instInfiniteFreeAbelianGroupOfNonempty
instInfiniteFreeGroupOfNonempty 📖mathematicalInfinite
FreeGroup
Infinite.of_surjective
instInfiniteNat
FreeGroup.norm_surjective
instInfiniteFreeMonoidOfNonempty 📖mathematicalInfinite
FreeMonoid
instInfiniteListOfNonempty
instInfiniteFreeRing 📖mathematicalInfinite
FreeRing
instInfiniteFreeAbelianGroupOfNonempty
nonempty_commRing 📖mathematicalCommRingfinite_or_infinite
nonempty_fintype
Cardinal.mk_freeCommRing
sup_of_le_left
nonempty_commRing_iff 📖mathematicalCommRingNonempty.map
nonempty_commRing
nonempty_commSemiring_iff 📖mathematicalCommSemiringNonempty.map
nonempty_commRing
nonempty_ring_iff 📖mathematicalRingNonempty.map
nonempty_commRing
nonempty_semiring_iff 📖mathematicalSemiringNonempty.map
nonempty_commRing

---

← Back to Index