📁 Source: Mathlib/SetTheory/Cardinal/HasCardinalLT.lean
HasCardinalLT
exists_regular_cardinal
exists_regular_cardinal_forall
of_injective
of_le
of_surjective
small
hasCardinalLT_aleph0_iff
hasCardinalLT_iUnion
hasCardinalLT_iff_cardinal_mk_lt
hasCardinalLT_iff_of_equiv
hasCardinalLT_lift_iff
hasCardinalLT_of_finite
hasCardinalLT_option_iff
hasCardinalLT_prod
hasCardinalLT_prod'
hasCardinalLT_sigma
hasCardinalLT_sigma'
hasCardinalLT_subtype_iSup
hasCardinalLT_subtype_max
hasCardinalLT_sum_iff
hasCardinalLT_ulift_iff
hasCardinalLT_union
Cardinal.IsRegular
Cardinal.isRegular_succ
le_max_right
Cardinal.instNoMaxOrder
Small
small_sigma
sigma_mk_injective
Cardinal.lift_lt
Cardinal.lift_lift
lt_of_le_of_lt
Cardinal.mk_le_of_injective
ULift.up_injective
ULift.down_injective
Cardinal
Cardinal.instLE
lt_of_lt_of_le
Cardinal.mk_le_of_surjective
ULift.up_surjective
ULift.down_surjective
LT.lt.trans
Cardinal.lift_lt_univ'
HasCardinalLT.Set.functor_obj
CategoryTheory.hasCardinalLT_arrow_discrete_iff
HasCardinalLT.Set.cocone_pt
CategoryTheory.hasCardinalLT_arrow_shrinkHoms_iff
CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily
HasCardinalLT.exists_regular_cardinal
CategoryTheory.Types.isCardinalPresentable_iff
HasCardinalLT.exists_regular_cardinal_forall
CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT
HasCardinalLT.Set.cocone_ι_app
HasCardinalLT.Set.functor_map_coe
CategoryTheory.hasCardinalLT_arrow_op_iff
HasCardinalLT.Set.instIsCardinalFiltered
HasCardinalLT.Set.instIsFilteredOfFactIsRegular
CategoryTheory.hasCardinalLT_arrow_shrink_iff
HasCardinalLT.Set.isFiltered_of_aleph0_le
Cardinal.aleph0
Finite
Cardinal.lift_aleph0
Cardinal.mk_lt_aleph0_iff
Set.Elem
Set.iUnion
Set.ext
iSup_apply
iSup_Prop_eq
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.lift_id
HasCardinalLT.of_injective
Equiv.injective
Cardinal.lift
StrictMono.lt_iff_lt
Cardinal.lift_strictMono
HasCardinalLT.of_le
Finite.of_fintype
HasCardinalLT.of_surjective
Cardinal.mk_prod
Cardinal.mul_lt_of_lt
Cardinal.IsRegular.lift
Fact.out
Cardinal.mk_sigma
Cardinal.sum_lt_lift_of_isRegular
iSup
Pi.supSet
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
Sum.inl_injective
Sum.inr_injective
Cardinal.mk_sum
Cardinal.lift_add
Cardinal.add_lt_of_lt
Set
Set.instUnion
---
← Back to Index