Documentation Verification Report

HasCardinalLT

📁 Source: Mathlib/SetTheory/Cardinal/HasCardinalLT.lean

Statistics

MetricCount
DefinitionsHasCardinalLT
1
Theoremsexists_regular_cardinal, exists_regular_cardinal_forall, of_injective, of_le, of_surjective, small, hasCardinalLT_aleph0_iff, hasCardinalLT_iUnion, hasCardinalLT_iff_cardinal_mk_lt, hasCardinalLT_iff_of_equiv, hasCardinalLT_lift_iff, hasCardinalLT_of_finite, hasCardinalLT_option_iff, hasCardinalLT_prod, hasCardinalLT_prod', hasCardinalLT_sigma, hasCardinalLT_sigma', hasCardinalLT_subtype_iSup, hasCardinalLT_subtype_max, hasCardinalLT_sum_iff, hasCardinalLT_ulift_iff, hasCardinalLT_union
22
Total23

HasCardinalLT

Theorems

NameKindAssumesProvesValidatesDepends On
exists_regular_cardinal 📖mathematicalCardinal.IsRegular
HasCardinalLT
Cardinal.isRegular_succ
le_max_right
hasCardinalLT_iff_of_equiv
Cardinal.instNoMaxOrder
exists_regular_cardinal_forall 📖mathematicalSmallCardinal.IsRegular
HasCardinalLT
exists_regular_cardinal
small_sigma
of_injective
sigma_mk_injective
of_injective 📖HasCardinalLTCardinal.lift_lt
Cardinal.lift_lift
lt_of_le_of_lt
Cardinal.mk_le_of_injective
ULift.up_injective
ULift.down_injective
of_le 📖HasCardinalLT
Cardinal
Cardinal.instLE
lt_of_lt_of_le
of_surjective 📖HasCardinalLTCardinal.lift_lt
Cardinal.lift_lift
lt_of_le_of_lt
Cardinal.mk_le_of_surjective
ULift.up_surjective
ULift.down_surjective
small 📖mathematicalHasCardinalLTSmallLT.lt.trans
Cardinal.lift_lift
Cardinal.lift_lt
Cardinal.lift_lt_univ'

(root)

Definitions

NameCategoryTheorems
HasCardinalLT 📖MathDef
24 mathmath: HasCardinalLT.Set.functor_obj, hasCardinalLT_of_finite, CategoryTheory.hasCardinalLT_arrow_discrete_iff, HasCardinalLT.Set.cocone_pt, CategoryTheory.hasCardinalLT_arrow_shrinkHoms_iff, hasCardinalLT_option_iff, hasCardinalLT_iff_of_equiv, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, HasCardinalLT.exists_regular_cardinal, CategoryTheory.Types.isCardinalPresentable_iff, hasCardinalLT_aleph0_iff, HasCardinalLT.exists_regular_cardinal_forall, CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT, hasCardinalLT_ulift_iff, hasCardinalLT_sum_iff, HasCardinalLT.Set.cocone_ι_app, HasCardinalLT.Set.functor_map_coe, CategoryTheory.hasCardinalLT_arrow_op_iff, HasCardinalLT.Set.instIsCardinalFiltered, hasCardinalLT_iff_cardinal_mk_lt, HasCardinalLT.Set.instIsFilteredOfFactIsRegular, CategoryTheory.hasCardinalLT_arrow_shrink_iff, HasCardinalLT.Set.isFiltered_of_aleph0_le, hasCardinalLT_lift_iff

Theorems

NameKindAssumesProvesValidatesDepends On
hasCardinalLT_aleph0_iff 📖mathematicalHasCardinalLT
Cardinal.aleph0
Finite
Cardinal.lift_aleph0
Cardinal.mk_lt_aleph0_iff
hasCardinalLT_iUnion 📖mathematicalHasCardinalLT
Set.Elem
Set.iUnionSet.ext
iSup_apply
iSup_Prop_eq
hasCardinalLT_subtype_iSup
hasCardinalLT_iff_cardinal_mk_lt 📖mathematicalHasCardinalLT
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.lift_id
hasCardinalLT_iff_of_equiv 📖mathematicalHasCardinalLTHasCardinalLT.of_injective
Equiv.injective
hasCardinalLT_lift_iff 📖mathematicalHasCardinalLT
Cardinal.lift
Cardinal.lift_lift
StrictMono.lt_iff_lt
Cardinal.lift_strictMono
hasCardinalLT_of_finite 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLTHasCardinalLT.of_le
hasCardinalLT_aleph0_iff
hasCardinalLT_option_iff 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLThasCardinalLT_iff_of_equiv
hasCardinalLT_sum_iff
HasCardinalLT.of_le
hasCardinalLT_aleph0_iff
Finite.of_fintype
hasCardinalLT_prod 📖Cardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLT
hasCardinalLT_prod'
HasCardinalLT.of_surjective
hasCardinalLT_prod' 📖Cardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLT
hasCardinalLT_iff_cardinal_mk_lt
Cardinal.mk_prod
Cardinal.lift_id
Cardinal.mul_lt_of_lt
hasCardinalLT_sigma 📖HasCardinalLTCardinal.IsRegular.lift
Fact.out
hasCardinalLT_sigma'
HasCardinalLT.of_surjective
hasCardinalLT_lift_iff
hasCardinalLT_sigma' 📖HasCardinalLTCardinal.mk_sigma
Cardinal.sum_lt_lift_of_isRegular
Fact.out
Cardinal.lift_id
hasCardinalLT_subtype_iSup 📖mathematicalHasCardinalLTiSup
Pi.supSet
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
HasCardinalLT.of_surjective
hasCardinalLT_sigma
iSup_apply
iSup_Prop_eq
hasCardinalLT_subtype_max 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLT
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
hasCardinalLT_sum_iff
HasCardinalLT.of_surjective
hasCardinalLT_sum_iff 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLTHasCardinalLT.of_injective
Sum.inl_injective
Sum.inr_injective
Cardinal.mk_sum
Cardinal.lift_add
Cardinal.lift_lift
Cardinal.add_lt_of_lt
Cardinal.lift_lt
hasCardinalLT_ulift_iff 📖mathematicalHasCardinalLThasCardinalLT_iff_of_equiv
hasCardinalLT_union 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
HasCardinalLT
Set.Elem
Set
Set.instUnion
hasCardinalLT_subtype_max

---

← Back to Index