📁 Source: Mathlib/SetTheory/Cardinal/Ordinal.lean
mk_biUnion_le_of_le
mk_biUnion_le_of_le_lift
mk_iUnion_Ordinal_le_of_le
mk_iUnion_Ordinal_lift_le_of_le
principal_add
principal_mul
principal_opow
card_iSup_Iio_le_card_mul_iSup
card_iSup_Iio_le_sum_card
card_iSup_le_sum_card
card_omega0_opow
card_opow_eq_of_omega0_le_left
card_opow_eq_of_omega0_le_right
card_opow_le
card_opow_le_of_omega0_le_left
card_opow_le_of_omega0_le_right
card_opow_omega0
lift_card_iSup_le_sum_card
principal_add_omega
principal_add_ord
principal_mul_omega
principal_mul_ord
principal_opow_omega
principal_opow_ord
Cardinal
instLE
Ordinal.card
aleph0
Set.Elem
Set.iUnion
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
lift_le
lift
Set.iUnion_congr_Prop
Set.biUnion_eq_iUnion
Function.Surjective.range_comp
OrderIso.surjective
LE.le.trans_eq
LE.le.trans
mk_iUnion_le_lift
mk_toType
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
ciSup_le'
Subtype.prop
mul_eq_self
aleph0_le_lift
Cardinal.instLE
card
iSup
Set.Iio
partialOrder
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Cardinal.instMul
Cardinal.lift
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.mk_toType
Equiv.iSup_comp
Cardinal.sum_le_lift_mk_mul_iSup
Cardinal.sum
ToType
ToType.toOrd
UnivLE.small
univLE_of_max
UnivLE.self
Cardinal.lift_id'
instPow
omega0
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
Cardinal.aleph0
le_rfl
Ne.bot_lt
card_omega0
Preorder.toLE
zero
LE.le.antisymm
max_le
card_le_card
left_le_opow
right_le_opow
LT.lt.trans_le
one_lt_omega0
one
omega0_pos
eq_nat_or_omega0_le
opow_natCast
natCast_pow
card_nat
le_max_of_le_left
Cardinal.natCast_le_aleph0
le_max_right
opow_zero
card_one
card_zero
sup_of_le_left
Cardinal.canonicallyOrderedAdd
LT.lt.le
opow_succ
card_mul
card_succ
Cardinal.mul_eq_max_of_aleph0_le_right
card_eq_zero
opow_eq_zero
LT.lt.not_ge
aleph0_le_card
max_comm
le_imp_le_of_le_of_le
sup_le_sup
le_refl
max_assoc
max_self
le_self_add
Order.IsNormal.apply_of_isSuccLimit
isNormal_opow
Cardinal.lift_id
bot_eq_zero'
Order.IsSuccLimit.ne_bot
le_ciSup_of_le
Cardinal.bddAbove_of_small
small_range
small_Iio
omega0_le_of_isSuccLimit
opow_one
le_of_lt
opow_le_opow_left
nat_lt_omega0
sup_of_le_right
Cardinal.mk_sigma
Cardinal.lift_umax
Cardinal.lift_mk_le_lift_mk_of_surjective
Set.mem_Iio
le_iSup
EquivLike.comp_surjective
lt_iSup_iff
OrderIso.symm_apply_apply
Principal
add
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
omega
IsInitial.principal_add
isInitial_omega
omega0_le_omega
Cardinal.ord
Cardinal.lt_ord
card_add
Cardinal.add_lt_of_lt
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
IsInitial.principal_mul
Cardinal.mul_lt_of_lt
eq_zero_or_pos
omega_zero
principal_opow_omega0
Cardinal.lt_omega_iff_card_lt
LE.le.trans_lt
max_lt
Cardinal.aleph_zero
Cardinal.aleph_lt_aleph
IsInitial.principal_opow
isInitial_ord
Cardinal.omega0_le_ord
Ordinal.IsInitial
Ordinal.omega0
Ordinal.Principal
Ordinal.add
ord_card
Ordinal.principal_add_ord
Ordinal.aleph0_le_card
Ordinal.monoidWithZero
Ordinal.principal_mul_ord
Ordinal.instPow
Ordinal.mem_range_omega_iff
Ordinal.principal_opow_omega
---
← Back to Index