Documentation Verification Report

Ordinal

📁 Source: Mathlib/SetTheory/Cardinal/Ordinal.lean

Statistics

MetricCount
Definitions0
Theoremsmk_biUnion_le_of_le, mk_biUnion_le_of_le_lift, mk_iUnion_Ordinal_le_of_le, mk_iUnion_Ordinal_lift_le_of_le, principal_add, principal_mul, principal_opow, card_iSup_Iio_le_card_mul_iSup, card_iSup_Iio_le_sum_card, card_iSup_le_sum_card, card_omega0_opow, card_opow_eq_of_omega0_le_left, card_opow_eq_of_omega0_le_right, card_opow_le, card_opow_le_of_omega0_le_left, card_opow_le_of_omega0_le_right, card_opow_omega0, lift_card_iSup_le_sum_card, principal_add_omega, principal_add_ord, principal_mul_omega, principal_mul_ord, principal_opow_omega, principal_opow_ord
24
Total24

Cardinal

Theorems

NameKindAssumesProvesValidatesDepends On
mk_biUnion_le_of_le 📖mathematicalCardinal
instLE
Ordinal.card
aleph0
Set.Elem
Set.iUnion
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
mk_biUnion_le_of_le_lift
lift_le
mk_biUnion_le_of_le_lift 📖mathematicalCardinal
instLE
lift
Ordinal.card
aleph0
Set.Elem
Set.iUnion
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set.iUnion_congr_Prop
Set.biUnion_eq_iUnion
Function.Surjective.range_comp
OrderIso.surjective
lift_le
LE.le.trans_eq
LE.le.trans
mk_iUnion_le_lift
mk_toType
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
ciSup_le'
Subtype.prop
mul_eq_self
aleph0_le_lift
mk_iUnion_Ordinal_le_of_le 📖mathematicalCardinal
instLE
Ordinal.card
aleph0
Set.Elem
Set.iUnion
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
mk_biUnion_le_of_le
mk_iUnion_Ordinal_lift_le_of_le 📖mathematicalCardinal
instLE
lift
Ordinal.card
aleph0
Set.Elem
Set.iUnion
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
mk_biUnion_le_of_le_lift

Ordinal

Theorems

NameKindAssumesProvesValidatesDepends On
card_iSup_Iio_le_card_mul_iSup 📖mathematicalCardinal
Cardinal.instLE
card
iSup
Ordinal
Set.Elem
Set.Iio
PartialOrder.toPreorder
partialOrder
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Cardinal.instMul
Cardinal.lift
Cardinal.instConditionallyCompleteLinearOrderBot
LE.le.trans
card_iSup_Iio_le_sum_card
Cardinal.mk_toType
Equiv.iSup_comp
Cardinal.sum_le_lift_mk_mul_iSup
card_iSup_Iio_le_sum_card 📖mathematicalCardinal
Cardinal.instLE
card
iSup
Ordinal
Set.Elem
Set.Iio
PartialOrder.toPreorder
partialOrder
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Cardinal.sum
ToType
ToType.toOrd
Equiv.iSup_comp
card_iSup_le_sum_card
card_iSup_le_sum_card 📖mathematicalCardinal
Cardinal.instLE
card
iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Cardinal.sum
lift_card_iSup_le_sum_card
UnivLE.small
univLE_of_max
UnivLE.self
Cardinal.lift_id'
card_omega0_opow 📖mathematicalcard
Ordinal
instPow
omega0
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
card_opow_eq_of_omega0_le_left
le_rfl
Ne.bot_lt
card_omega0
card_opow_eq_of_omega0_le_left 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
Preorder.toLT
zero
card
instPow
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
LE.le.antisymm
card_opow_le_of_omega0_le_left
max_le
card_le_card
left_le_opow
right_le_opow
LT.lt.trans_le
one_lt_omega0
card_opow_eq_of_omega0_le_right 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
omega0
card
instPow
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
LE.le.antisymm
card_opow_le_of_omega0_le_right
max_le
card_le_card
left_le_opow
LT.lt.trans_le
omega0_pos
right_le_opow
card_opow_le 📖mathematicalCardinal
Cardinal.instLE
card
Ordinal
instPow
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
eq_nat_or_omega0_le
opow_natCast
natCast_pow
card_nat
le_max_of_le_left
Cardinal.natCast_le_aleph0
LE.le.trans
card_opow_le_of_omega0_le_right
le_max_right
card_opow_le_of_omega0_le_left
card_opow_le_of_omega0_le_left 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
Cardinal
Cardinal.instLE
card
instPow
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
opow_zero
card_one
card_zero
sup_of_le_left
Cardinal.canonicallyOrderedAdd
LE.le.trans
LT.lt.le
one_lt_omega0
opow_succ
card_mul
card_succ
Cardinal.mul_eq_max_of_aleph0_le_right
card_eq_zero
opow_eq_zero
LT.lt.not_ge
omega0_pos
aleph0_le_card
max_comm
le_imp_le_of_le_of_le
sup_le_sup
le_refl
max_assoc
max_self
le_self_add
Order.IsNormal.apply_of_isSuccLimit
isNormal_opow
LT.lt.trans_le
card_iSup_Iio_le_card_mul_iSup
Cardinal.lift_id
bot_eq_zero'
canonicallyOrderedAdd
Order.IsSuccLimit.ne_bot
le_ciSup_of_le
Cardinal.bddAbove_of_small
small_range
small_Iio
omega0_le_of_isSuccLimit
opow_one
max_le
ciSup_le'
card_le_card
le_of_lt
le_max_right
card_opow_le_of_omega0_le_right 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
Cardinal
Cardinal.instLE
card
instPow
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
eq_nat_or_omega0_le
LE.le.trans
card_le_card
opow_le_opow_left
LT.lt.le
nat_lt_omega0
card_opow_le_of_omega0_le_left
le_rfl
sup_of_le_right
card_nat
card_opow_omega0 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
card
instPow
omega0
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
card_opow_eq_of_omega0_le_right
le_rfl
card_omega0
max_comm
lift_card_iSup_le_sum_card 📖mathematicalCardinal
Cardinal.instLE
Cardinal.lift
card
iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Cardinal.sum
Cardinal.mk_sigma
Cardinal.lift_id'
Cardinal.lift_umax
Cardinal.lift_mk_le_lift_mk_of_surjective
LT.lt.trans_le
Set.mem_Iio
le_iSup
EquivLike.comp_surjective
lt_iSup_iff
OrderIso.symm_apply_apply
principal_add_omega 📖mathematicalPrincipal
Ordinal
add
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
IsInitial.principal_add
isInitial_omega
omega0_le_omega
principal_add_ord 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Principal
Ordinal
add
Cardinal.ord
Cardinal.lt_ord
card_add
Cardinal.add_lt_of_lt
principal_mul_omega 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
IsInitial.principal_mul
isInitial_omega
omega0_le_omega
principal_mul_ord 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Principal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Cardinal.ord
Cardinal.lt_ord
card_mul
Cardinal.mul_lt_of_lt
principal_opow_omega 📖mathematicalPrincipal
Ordinal
instPow
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instFunLikeOrderEmbedding
omega
eq_zero_or_pos
canonicallyOrderedAdd
omega_zero
principal_opow_omega0
Cardinal.lt_omega_iff_card_lt
LE.le.trans_lt
card_opow_le
max_lt
Cardinal.aleph_zero
Cardinal.aleph_lt_aleph
principal_opow_ord 📖mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Principal
Ordinal
instPow
Cardinal.ord
IsInitial.principal_opow
isInitial_ord
Cardinal.omega0_le_ord

Ordinal.IsInitial

Theorems

NameKindAssumesProvesValidatesDepends On
principal_add 📖mathematicalOrdinal.IsInitial
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.omega0
Ordinal.Principal
Ordinal.add
ord_card
Ordinal.principal_add_ord
Ordinal.aleph0_le_card
principal_mul 📖mathematicalOrdinal.IsInitial
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.omega0
Ordinal.Principal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
ord_card
Ordinal.principal_mul_ord
Ordinal.aleph0_le_card
principal_opow 📖mathematicalOrdinal.IsInitial
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.omega0
Ordinal.Principal
Ordinal.instPow
Ordinal.mem_range_omega_iff
Ordinal.principal_opow_omega

---

← Back to Index