π Source: Mathlib/SetTheory/Cardinal/Regular.lean
IsInaccessible
IsRegular
aleph0_lt
isRegular
isStrongLimit
nat_lt
ne_zero
pos
univ
aleph0_le
cof_eq
cof_omega_eq
ord_pos
blsub_lt_ord_lift_of_isRegular
blsub_lt_ord_of_isRegular
bsup_lt_ord_lift_of_isRegular
bsup_lt_ord_of_isRegular
card_biUnion_lt_iff_forall_of_isRegular
card_iUnion_lt_iff_forall_of_isRegular
card_lt_of_card_biUnion_lt
card_lt_of_card_iUnion_lt
derivFamily_lt_ord
derivFamily_lt_ord_lift
deriv_lt_ord
fact_isRegular_aleph0
iSup_lt_lift_of_isRegular
iSup_lt_of_isRegular
iSup_lt_ord_lift_of_isRegular
iSup_lt_ord_of_isRegular
isInaccesible_def
isInaccessible_def
isRegular_aleph0
isRegular_aleph_one
isRegular_aleph_succ
isRegular_cof
isRegular_lift_iff
isRegular_preAleph_succ
isRegular_succ
lsub_lt_ord_lift_of_isRegular
lsub_lt_ord_of_isRegular
nfpFamily_lt_ord_lift_of_isRegular
nfpFamily_lt_ord_of_isRegular
nfp_lt_ord_of_isRegular
sum_lt_lift_of_isRegular
sum_lt_of_isRegular
iSup_sequence_lt_omega1
iSup_sequence_lt_omega_one
IsInaccessible.univ
HasCardinalLT.exists_regular_cardinal
HasCardinalLT.exists_regular_cardinal_forall
CategoryTheory.MorphismProperty.smallObjectΞΊ_isRegular
IsInaccessible.isRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal.card
Ordinal
Ordinal.partialOrder
ord
Ordinal.blsub
Ordinal.blsub_lt_ord_lift
IsRegular.cof_eq
Ordinal.blsub_lt_ord
Ordinal.bsup
Ordinal.bsup_lt_ord_lift
Ordinal.bsup_lt_ord
Set.Elem
Set.iUnion
Set
Set.instMembership
Set.biUnion_eq_iUnion
SetCoe.forall'
lt_of_le_of_lt
mk_sUnion_le
mul_lt_of_lt
IsRegular.aleph0_le
mk_range_le
mk_le_mk_of_subset
Set.subset_iUnion
Ordinal.derivFamily
lift_id
lt_of_le_of_ne
Ordinal.derivFamily_zero
Ordinal.nfpFamily_lt_ord_lift
Ordinal.derivFamily_succ
Order.IsSuccLimit.succ_lt
isSuccLimit_ord
LT.lt.trans
Order.lt_succ
Ordinal.instNoMaxOrder
Ordinal.iSup_Iio_eq_bsup
Ordinal.derivFamily_limit
ord_lt_ord
LE.le.trans_lt
ord_card_le
Ordinal.deriv
mk_fintype
Fintype.card_unique
Nat.cast_one
lift_one
one_lt_aleph0
Fact
aleph0
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Ordinal.iSup_lt_lift
Ordinal.iSup_lt
Ordinal.instConditionallyCompleteLinearOrderBot
Ordinal.iSup_lt_ord_lift
Ordinal.iSup_lt_ord
IsStrongLimit
IsInaccessible.aleph0_lt
IsInaccessible.isStrongLimit
IsStrongLimit.two_power_lt
le_rfl
ord_aleph0
Ordinal.cof_omega0
DFunLike.coe
OrderEmbedding
Preorder.toLE
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
succ_aleph0
Order.succ
Ordinal.instSuccOrder
aleph_succ
aleph0_le_aleph
Order.IsSuccLimit
Ordinal.cof
Ordinal.aleph0_le_cof
Eq.ge
Ordinal.cof_cof
lift_le
Ordinal.lift_cof
lift_ord
IsRegular.lift
Ordinal.omega0
OrderIso
instFunLikeOrderIso
preAleph
preAleph_succ
aleph0_le_preAleph
instSuccOrder
LE.le.trans
Order.le_succ
Order.succ_le_of_lt
mk_out
ord_eq
Ordinal.cof_eq'
lt_imp_lt_of_le_imp_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
mul_eq_self
Order.succ_le_iff
instNoMaxOrder
sum_const'
le_trans
sum_le_sum
Order.lt_succ_iff
lt_ord
Ordinal.typein_lt_type
Ordinal.lsub
Ordinal.lsub_lt_ord_lift
Ordinal.lsub_lt_ord
Ordinal.nfpFamily
Ordinal.nfp
Ordinal.nfp_lt_ord
sum
sum_le_lift_mk_mul_iSup
Cardinal.IsInaccessible
Cardinal.partialOrder
Cardinal.aleph0
Cardinal.IsRegular
LT.lt.le
Cardinal.IsStrongLimit
Cardinal.instNatCast
Cardinal.natCast_lt_aleph0
LT.lt.ne'
Cardinal.instZero
Cardinal.aleph0_pos
Cardinal.univ
Cardinal.aleph0_lt_univ
Cardinal.ord_univ
Ordinal.cof_univ
Cardinal.IsStrongLimit.two_power_lt
Cardinal.IsStrongLimit.univ
Cardinal.instLE
Cardinal.ord
LE.le.antisymm
Ordinal.cof_ord_le
Cardinal.aleph
Ordinal.omega
Cardinal.ord_aleph
lt_of_lt_of_le
Ordinal.zero
Cardinal.lt_ord
Ordinal.card_zero
LT.lt.trans_le
one
iSup_lt_ord_lift
Cardinal.IsRegular.cof_eq
Cardinal.isRegular_aleph_one
Cardinal.mk_le_aleph0
instCountableULift
Cardinal.aleph0_lt_aleph_one
---
β Back to Index