Documentation Verification Report

Regular

πŸ“ Source: Mathlib/SetTheory/Cardinal/Regular.lean

Statistics

MetricCount
DefinitionsIsInaccessible, IsRegular
2
Theoremsaleph0_lt, isRegular, isStrongLimit, nat_lt, ne_zero, pos, univ, aleph0_le, cof_eq, cof_omega_eq, nat_lt, ne_zero, ord_pos, pos, blsub_lt_ord_lift_of_isRegular, blsub_lt_ord_of_isRegular, bsup_lt_ord_lift_of_isRegular, bsup_lt_ord_of_isRegular, card_biUnion_lt_iff_forall_of_isRegular, card_iUnion_lt_iff_forall_of_isRegular, card_lt_of_card_biUnion_lt, card_lt_of_card_iUnion_lt, derivFamily_lt_ord, derivFamily_lt_ord_lift, deriv_lt_ord, fact_isRegular_aleph0, iSup_lt_lift_of_isRegular, iSup_lt_of_isRegular, iSup_lt_ord_lift_of_isRegular, iSup_lt_ord_of_isRegular, isInaccesible_def, isInaccessible_def, isRegular_aleph0, isRegular_aleph_one, isRegular_aleph_succ, isRegular_cof, isRegular_lift_iff, isRegular_preAleph_succ, isRegular_succ, lsub_lt_ord_lift_of_isRegular, lsub_lt_ord_of_isRegular, nfpFamily_lt_ord_lift_of_isRegular, nfpFamily_lt_ord_of_isRegular, nfp_lt_ord_of_isRegular, sum_lt_lift_of_isRegular, sum_lt_of_isRegular, iSup_sequence_lt_omega1, iSup_sequence_lt_omega_one
48
Total50

Cardinal

Definitions

NameCategoryTheorems
IsInaccessible πŸ“–MathDef
3 mathmath: isInaccessible_def, IsInaccessible.univ, isInaccesible_def
IsRegular πŸ“–MathDef
14 mathmath: isInaccessible_def, HasCardinalLT.exists_regular_cardinal, isRegular_cof, HasCardinalLT.exists_regular_cardinal_forall, CategoryTheory.MorphismProperty.smallObjectΞΊ_isRegular, isRegular_aleph_succ, IsInaccessible.isRegular, isRegular_succ, isRegular_aleph_one, isRegular_aleph0, isInaccesible_def, isRegular_lift_iff, fact_isRegular_aleph0, isRegular_preAleph_succ

Theorems

NameKindAssumesProvesValidatesDepends On
blsub_lt_ord_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal.card
Ordinal
Ordinal.partialOrder
ord
Ordinal.blsubβ€”Ordinal.blsub_lt_ord_lift
IsRegular.cof_eq
blsub_lt_ord_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal.card
Ordinal
Ordinal.partialOrder
ord
Ordinal.blsubβ€”Ordinal.blsub_lt_ord
IsRegular.cof_eq
bsup_lt_ord_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal.card
Ordinal
Ordinal.partialOrder
ord
Ordinal.bsupβ€”Ordinal.bsup_lt_ord_lift
IsRegular.cof_eq
bsup_lt_ord_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal.card
Ordinal
Ordinal.partialOrder
ord
Ordinal.bsupβ€”Ordinal.bsup_lt_ord
IsRegular.cof_eq
card_biUnion_lt_iff_forall_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Set.iUnion
Set
Set.instMembership
β€”Set.biUnion_eq_iUnion
card_iUnion_lt_iff_forall_of_isRegular
SetCoe.forall'
card_iUnion_lt_iff_forall_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Set.iUnion
β€”card_lt_of_card_iUnion_lt
lt_of_le_of_lt
mk_sUnion_le
mul_lt_of_lt
IsRegular.aleph0_le
mk_range_le
iSup_lt_of_isRegular
card_lt_of_card_biUnion_lt πŸ“–β€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Set.iUnion
Set
Set.instMembership
β€”β€”card_lt_of_card_iUnion_lt
Set.biUnion_eq_iUnion
card_lt_of_card_iUnion_lt πŸ“–β€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Set.iUnion
β€”β€”lt_of_le_of_lt
mk_le_mk_of_subset
Set.subset_iUnion
derivFamily_lt_ord πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal
Ordinal.partialOrder
ord
Ordinal.derivFamilyβ€”derivFamily_lt_ord_lift
lift_id
derivFamily_lt_ord_lift πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal
Ordinal.partialOrder
ord
Ordinal.derivFamilyβ€”IsRegular.cof_eq
lt_of_le_of_ne
Ordinal.derivFamily_zero
Ordinal.nfpFamily_lt_ord_lift
Ordinal.derivFamily_succ
Order.IsSuccLimit.succ_lt
isSuccLimit_ord
LT.lt.trans
Order.lt_succ
Ordinal.instNoMaxOrder
Ordinal.iSup_Iio_eq_bsup
Ordinal.derivFamily_limit
bsup_lt_ord_of_isRegular
ord_lt_ord
LE.le.trans_lt
ord_card_le
deriv_lt_ord πŸ“–mathematicalIsRegular
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Ordinal.derivβ€”derivFamily_lt_ord_lift
mk_fintype
Fintype.card_unique
Nat.cast_one
lift_one
LT.lt.trans
one_lt_aleph0
lt_of_le_of_ne
fact_isRegular_aleph0 πŸ“–mathematicalβ€”Fact
IsRegular
aleph0
β€”isRegular_aleph0
iSup_lt_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.iSup_lt_lift
IsRegular.cof_eq
iSup_lt_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.iSup_lt
IsRegular.cof_eq
iSup_lt_ord_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal
Ordinal.partialOrder
ord
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
β€”Ordinal.iSup_lt_ord_lift
IsRegular.cof_eq
iSup_lt_ord_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal
Ordinal.partialOrder
ord
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
β€”Ordinal.iSup_lt_ord
IsRegular.cof_eq
isInaccesible_def πŸ“–mathematicalβ€”IsInaccessible
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
IsRegular
IsStrongLimit
β€”isInaccessible_def
isInaccessible_def πŸ“–mathematicalβ€”IsInaccessible
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
IsRegular
IsStrongLimit
β€”IsInaccessible.aleph0_lt
IsInaccessible.isRegular
IsInaccessible.isStrongLimit
IsStrongLimit.two_power_lt
isRegular_aleph0 πŸ“–mathematicalβ€”IsRegular
aleph0
β€”le_rfl
ord_aleph0
Ordinal.cof_omega0
isRegular_aleph_one πŸ“–mathematicalβ€”IsRegular
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Ordinal.one
β€”succ_aleph0
isRegular_succ
le_rfl
isRegular_aleph_succ πŸ“–mathematicalβ€”IsRegular
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instLE
instFunLikeOrderEmbedding
aleph
Order.succ
Ordinal.instSuccOrder
β€”aleph_succ
isRegular_succ
aleph0_le_aleph
isRegular_cof πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
IsRegular
Ordinal.cof
β€”Ordinal.aleph0_le_cof
Eq.ge
Ordinal.cof_cof
isRegular_lift_iff πŸ“–mathematicalβ€”IsRegular
lift
β€”lift_le
Ordinal.lift_cof
lift_ord
IsRegular.lift
isRegular_preAleph_succ πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.omega0
IsRegular
DFunLike.coe
OrderIso
Cardinal
instLE
instFunLikeOrderIso
preAleph
Order.succ
Ordinal.instSuccOrder
β€”preAleph_succ
isRegular_succ
aleph0_le_preAleph
isRegular_succ πŸ“–mathematicalCardinal
instLE
aleph0
IsRegular
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”LE.le.trans
Order.le_succ
Order.succ_le_of_lt
mk_out
ord_eq
isSuccLimit_ord
Ordinal.cof_eq'
lt_imp_lt_of_le_imp_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
CanonicallyOrderedAdd.toMulLeftMono
canonicallyOrderedAdd
mul_eq_self
Order.succ_le_iff
instNoMaxOrder
sum_const'
le_trans
sum_le_sum
Order.lt_succ_iff
lt_ord
Ordinal.typein_lt_type
lsub_lt_ord_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal
Ordinal.partialOrder
ord
Ordinal.lsubβ€”Ordinal.lsub_lt_ord_lift
IsRegular.cof_eq
lsub_lt_ord_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal
Ordinal.partialOrder
ord
Ordinal.lsubβ€”Ordinal.lsub_lt_ord
IsRegular.cof_eq
nfpFamily_lt_ord_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
Ordinal
Ordinal.partialOrder
ord
Ordinal.nfpFamilyβ€”Ordinal.nfpFamily_lt_ord_lift
IsRegular.cof_eq
lt_of_le_of_ne
nfpFamily_lt_ord_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal
Ordinal.partialOrder
ord
Ordinal.nfpFamilyβ€”nfpFamily_lt_ord_lift_of_isRegular
lift_id
nfp_lt_ord_of_isRegular πŸ“–mathematicalIsRegular
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Ordinal.nfpβ€”Ordinal.nfp_lt_ord
IsRegular.cof_eq
lt_of_le_of_ne
sum_lt_lift_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
sumβ€”LE.le.trans_lt
sum_le_lift_mk_mul_iSup
mul_lt_of_lt
iSup_lt_lift_of_isRegular
sum_lt_of_isRegular πŸ“–mathematicalIsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
sumβ€”sum_lt_lift_of_isRegular
lift_id

Cardinal.IsInaccessible

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_lt πŸ“–mathematicalCardinal.IsInaccessibleCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
β€”β€”
isRegular πŸ“–mathematicalCardinal.IsInaccessibleCardinal.IsRegularβ€”LT.lt.le
aleph0_lt
isStrongLimit πŸ“–mathematicalCardinal.IsInaccessibleCardinal.IsStrongLimitβ€”ne_zero
nat_lt πŸ“–mathematicalCardinal.IsInaccessibleCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instNatCast
β€”LT.lt.trans
Cardinal.natCast_lt_aleph0
ne_zero πŸ“–β€”Cardinal.IsInaccessibleβ€”β€”LT.lt.ne'
pos
pos πŸ“–mathematicalCardinal.IsInaccessibleCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
β€”LT.lt.trans
Cardinal.aleph0_pos
univ πŸ“–mathematicalβ€”Cardinal.IsInaccessible
Cardinal.univ
β€”Cardinal.aleph0_lt_univ
Cardinal.ord_univ
Ordinal.cof_univ
Cardinal.IsStrongLimit.two_power_lt
Cardinal.IsStrongLimit.univ

Cardinal.IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_le πŸ“–mathematicalCardinal.IsRegularCardinal
Cardinal.instLE
Cardinal.aleph0
β€”β€”
cof_eq πŸ“–mathematicalCardinal.IsRegularOrdinal.cof
Cardinal.ord
β€”LE.le.antisymm
Ordinal.cof_ord_le
cof_omega_eq πŸ“–mathematicalCardinal.IsRegular
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Cardinal.instLE
instFunLikeOrderEmbedding
Cardinal.aleph
Ordinal.cof
Ordinal.omega
β€”Cardinal.ord_aleph
cof_eq
nat_lt πŸ“–mathematicalCardinal.IsRegularCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instNatCast
β€”lt_of_lt_of_le
Cardinal.natCast_lt_aleph0
aleph0_le
ne_zero πŸ“–β€”Cardinal.IsRegularβ€”β€”LT.lt.ne'
pos
ord_pos πŸ“–mathematicalCardinal.IsRegularOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.zero
Cardinal.ord
β€”Cardinal.lt_ord
Ordinal.card_zero
pos
pos πŸ“–mathematicalCardinal.IsRegularCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
β€”LT.lt.trans_le
Cardinal.aleph0_pos

Ordinal

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_sequence_lt_omega1 πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Cardinal.ord
DFunLike.coe
OrderEmbedding
Cardinal
Preorder.toLE
Cardinal.instLE
instFunLikeOrderEmbedding
Cardinal.aleph
one
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”iSup_sequence_lt_omega_one
iSup_sequence_lt_omega_one πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Cardinal.ord
DFunLike.coe
OrderEmbedding
Cardinal
Preorder.toLE
Cardinal.instLE
instFunLikeOrderEmbedding
Cardinal.aleph
one
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”iSup_lt_ord_lift
Cardinal.IsRegular.cof_eq
Cardinal.isRegular_aleph_one
lt_of_le_of_lt
Cardinal.mk_le_aleph0
instCountableULift
Cardinal.aleph0_lt_aleph_one

---

← Back to Index