Documentation Verification Report

Subfield

πŸ“ Source: Mathlib/SetTheory/Cardinal/Subfield.lean

Statistics

MetricCount
DefinitionsSubfield
1
TheoremscardinalMk_closure, cardinalMk_closure_le_max
2
Total3

Subfield

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalMk_closure πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
closure
Set.Elem
β€”LE.le.antisymm
LE.le.trans_eq
cardinalMk_closure_le_max
max_eq_left
Cardinal.mk_le_mk_of_subset
subset_closure
cardinalMk_closure_le_max πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Subfield
SetLike.instMembership
instSetLike
closure
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Set.Elem
Cardinal.aleph0
β€”LE.le.trans
Cardinal.mk_le_of_surjective
Cardinal.lift_uzero
Cardinal.mk_sum
Cardinal.lift_lt_aleph0
Cardinal.lt_aleph0_of_finite
Finite.of_fintype
lt_or_ge
max_eq_right
LT.lt.le
Cardinal.add_lt_aleph0
max_eq_left
Cardinal.add_eq_right
WType.cardinalMk_le_max_aleph0_of_finite'
Fintype.complete
Bool.instFinite

(root)

Definitions

NameCategoryTheorems
Subfield πŸ“–CompData
205 mathmath: Subfield.ext_iff, FixedPoints.instFiniteDimensionalSubtypeMemSubfieldSubfield, Subfield.rank_comap, IntermediateField.fieldRange_le, FixedPoints.finrank_eq_card, IntermediateField.sSup_toSubfield, Subfield.map_inf, FixedPoints.minpoly.monic, HahnSeries.mem_cardSuppLTSubfield, FixedPoints.minpoly.irreducible, Subfield.mem_sInf, NumberField.IsCMField.isConj_complexConj, Subfield.inf_relrank_left, NumberField.IsCMField.zpowers_complexConj_eq_top, Subfield.coe_add, NumberField.instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, Subfield.relfinrank_eq_one_iff, Subfield.closure_le, Subfield.mem_toSubring, FixedPoints.isSeparable, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.IsCMField.units_rank_eq_units_rank, NumberField.mem_maximalRealSubfield_iff, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, FixedPoints.minpoly.evalβ‚‚', Subfield.mem_top, RingHom.mem_fieldRange_self, Subfield.relfinrank_top_left, Subfield.coe_top, Subfield.map_sup, Subfield.splits_bot, Subfield.coe_mul, Subfield.map_iInf, Subfield.cardinalMk_closure_le_max, NumberField.isTotallyReal_sup, Subfield.mem_closure, FixedPoints.rank_le_card, NumberField.isTotallyReal_top_iff, instSubsingletonSubfieldRat, Subfield.mk_le_mk, Subfield.relrank_top_left, Subfield.closure_iUnion, NumberField.IsCMField.isQuadraticExtension, Subfield.instSubfieldClass, RingHom.eqOn_field_closure, NumberField.IsCMField.orderOf_complexConj, IntermediateField.iInf_toSubfield, Subfield.mem_bot_iff_pow_eq_self, Subfield.coe_inv, Subfield.isTotallyReal_bot, NumberField.IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, Subfield.coe_zero, Subfield.mem_closure_iff, IntermediateField.coe_type_toSubfield, Subfield.smulCommClass_left, FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield, RingHom.coe_rangeRestrictField, Subfield.closure_mono, FixedPoints.normal, Subfield.finrank_comap, Subfield.mem_inf, NumberField.instIsTotallyRealSubtypeMemSubfieldTop, FixedPoints.finrank_le_card, Subfield.smul_def, Subfield.mem_iInf, HahnSeries.cardSuppLTSubfield_carrier, Subfield.relfinrank_comap_comap_eq_relfinrank_inf, NumberField.IsCMField.complexConj_apply_apply, Subfield.mem_closure_of_mem, NumberField.of_subfield, NumberField.IsCMField.coe_ringOfIntegersComplexConj, Subfield.relrank_comap_comap_eq_relrank_inf, NumberField.IsCMField.equivInfinitePlace_apply, IntermediateField.mem_toSubfield, NumberField.IsCMField.is_quadratic, NumberField.IsCMField.complexConj_apply_eq_self, Subfield.algebraMap_ofSubfield, Subfield.map_comap_eq, Subfield.zero_mem, Subfield.coe_iInf, Subfield.bot_eq_of_zMod_algebra, Subfield.map_bot, Subfield.gc_map_comap, NumberField.IsCMField.complexEmbedding_complexConj, Subfield.coe_comap, IsFractionRing.closure_range_algebraMap, NumberField.CMExtension.equivMaximalRealSubfield_apply, NumberField.isTotallyReal_iff_le_maximalRealSubfield, Subfield.subtype_apply, Subfield.roots_X_pow_char_sub_X_bot, Subfield.inf_relfinrank_left, Subfield.relfinrank_top_right, NumberField.maximalRealSubfield_eq_top_iff_isTotallyReal, NumberField.IsCMField.card_infinitePlace_eq_card_infinitePlace, Subfield.relfinrank_inf_mul_relfinrank, instSubsingletonSubfieldZMod, Subfield.coe_one, Subfield.smulCommClass_right, Subfield.instFaithfulSMulSubtypeMem, Subfield.extendScalars_top, IntermediateField.coe_toSubfield, Subfield.cardinalMk_closure, NumberField.IsTotallyReal.maximalRealSubfield_eq_top, Subfield.coe_set_mk, Subfield.continuousSMul, Subfield.closure_sUnion, Subfield.fieldRange_subtype, Subfield.coe_subtype, Subfield.bot_eq_of_charZero, NumberField.isTotallyReal_maximalRealSubfield, Subfield.relrank_inf_mul_relrank, Subfield.comap_top, Subfield.one_mem, Subfield.coe_inf, Subfield.sInf_toSubring, Subfield.inf_relfinrank_right, Subfield.map_iSup, FixedPoints.toAlgAut_surjective, FixedPoints.isIntegral, RingHom.coe_fieldRange, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, Subfield.mem_toAddSubgroup, Subfield.mem_mk, FixedPoints.smul_polynomial, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, NumberField.IsCMField.mem_realUnits_iff, IntermediateField.iSup_toSubfield, Subfield.charP, RingHom.fieldRange_eq_map, Subfield.coe_sInf, Subfield.extendScalars.orderIso_apply, Subfield.map_le_iff_le_comap, Subfield.relrank_top_right, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, Subfield.coe_toSubring, RingHom.rangeRestrictField_bijective, Subfield.closure_preimage_le, NumberField.IsCMField.exists_isConj, FixedPoints.toAlgHom_bijective, mem_bot_iff_intCast, Subfield.isClosed_topologicalClosure, IsGaloisGroup.fixedPoints, IntermediateField.top_toSubfield, ZMod.instSubsingletonSubfield, Subfield.closure_eq, NumberField.IsCMField.complexConj_eq_self_iff, Subfield.expChar, Subfield.mem_toSubmonoid, Subfield.instIsScalarTowerSubtypeMem, Subfield.closure_union, IntermediateField.sInf_toSubfield, NumberField.IsTotallyReal.le_maximalRealSubfield, Subfield.lift_rank_comap, Subfield.comap_iInf, Subfield.relrank_eq_one_iff, FixedPoints.minpoly_eq_minpoly, Complex.subfield_eq_of_closed, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, RingHom.mem_fieldRange, Subfield.closure_empty, IntermediateField.inf_toSubfield, Subfield.coe_div, Subfield.subset_closure, Subfield.coe_toAddSubgroup, RingHom.fieldRange_eq_top_iff, FixedPoints.toAlgAut_bijective, FixedPoints.smul, NumberField.IsCMField.infinitePlace_complexConj, FixedPoints.smulCommClass', RingHom.mem_eqLocusField, IsGalois.of_fixed_field, FixedPoints.coe_algebraMap, Subfield.card_bot, Subfield.extendScalars.orderIso_symm_apply_coe, IntermediateField.sup_toSubfield, Subfield.mem_map, RingHom.rangeRestrictFieldEquiv_apply_coe, Subfield.coe_map, Subfield.extendScalars_self, Subfield.intCast_mem, ZMod.fieldRange_castHom_eq_bot, RingHom.field_closure_preimage_le, Real.subfield_eq_of_closed, Subfield.closure_univ, Subfield.lift_relrank_comap_comap_eq_lift_relrank_inf, IntermediateField.toSubfield_injective, Subfield.subtype_injective, Subfield.completableTopField, Subfield.coe_sub, Subfield.inf_relrank_right, NumberField.instIsAlgebraicSubtypeMemSubfield, NumberField.IsCMField.complexConj_torsion, Subfield.isGLB_sInf, Subfield.mem_carrier, Subfield.coe_neg, Subfield.le_topologicalClosure, NumberField.IsCMField.Units.complexConj_eq_self_iff, Subfield.toIsStrictOrderedRing, Subfield.coe_toSubmonoid, Subfield.extendScalars_injective, NumberField.IsCMField.regOfFamily_realFunSystem, Subfield.mem_comap, FixedBy.subfield_mem_iff, Subfield.comap_inf, IntermediateField.adjoin_contains_field_as_subfield

---

← Back to Index