Documentation Verification Report

Basic

📁 Source: Mathlib/SetTheory/Game/Basic.lean

Statistics

MetricCount
DefinitionsGame, Fuzzy, LF, instAdd, instAddCommGroupWithOneGame, instInhabited, instNeg, instPartialOrderGame, instZero, InvTy, instInhabited, instDiv, instInv, instMul, inv', inv'One, inv'Zero, invOne, invVal, mulCommRelabelling, mulNegRelabelling, mulOneRelabelling, mulOption, mulZeroRelabelling, negMulRelabelling, oneMulRelabelling, toLeftMovesMul, toRightMovesMul, uniqueInvTy, zeroMulRelabelling
30
TheoremsaddLeftMono, addLeftStrictMono, addRightMono, addRightStrictMono, add_lf_add_left, add_lf_add_right, bddAbove_of_small, bddAbove_range_of_small, bddBelow_of_small, bddBelow_range_of_small, instTrichotomousLF, isOrderedAddMonoid, not_le, not_lf, zero_def, equiv_iff_game_eq, fuzzy_iff_game_fuzzy, game_eq, instIsEmptyInvTyTrue, inv'_one, inv'_one_equiv, inv'_zero_equiv, invVal_isEmpty, inv_eq_of_equiv_zero, inv_eq_of_lf_zero, inv_eq_of_pos, inv_one, inv_one_equiv, inv_zero, isEmpty_leftMoves_mul, isEmpty_rightMoves_mul, le_iff_game_le, leftMoves_mul, leftMoves_mul_cases, leftMoves_mul_iff, left_distrib_equiv, lf_iff_game_lf, lt_iff_game_lt, mk_mul_moveLeft_inl, mk_mul_moveLeft_inr, mk_mul_moveRight_inl, mk_mul_moveRight_inr, mulOption_neg_neg, mulOption_symm, mul_assoc_equiv, mul_comm, mul_comm_equiv, mul_moveLeft_inl, mul_moveLeft_inr, mul_moveRight_inl, mul_moveRight_inr, mul_neg, mul_one, mul_one_equiv, mul_zero, mul_zero_equiv, neg_mk_mul_moveLeft_inl, neg_mk_mul_moveLeft_inr, neg_mk_mul_moveRight_inl, neg_mk_mul_moveRight_inr, neg_mul, one_mul, one_mul_equiv, quot_add, quot_eq_of_mk'_quot_eq, quot_left_distrib, quot_left_distrib_sub, quot_mul_assoc, quot_mul_comm, quot_mul_neg, quot_mul_one, quot_mul_zero, quot_natCast, quot_neg, quot_neg_mul, quot_neg_mul_neg, quot_one, quot_one_mul, quot_right_distrib, quot_right_distrib_sub, quot_sub, quot_zero, quot_zero_mul, rightMoves_mul, rightMoves_mul_cases, rightMoves_mul_iff, right_distrib_equiv, zero_lf_inv', zero_mul, zero_mul_equiv
90
Total120

SetTheory

Definitions

NameCategoryTheorems
Game 📖CompOp
41 mathmath: Game.birthday_add_le, Game.birthday_neg, Game.addLeftMono, Game.birthday_sub_le, Game.birthday_natCast, Ordinal.toGame_lt_iff, Game.not_le, Ordinal.toGame_one, PGame.quot_natCast, Game.zero_def, Game.birthday_zero, Game.birthday_one, Game.birthday_ordinalToGame, Game.le_birthday, Game.instTrichotomousLF, Game.birthday_eq_zero, Game.bddBelow_of_small, Ordinal.mk_toPGame, Game.isOrderedAddMonoid, Ordinal.toGame_zero, Game.addRightStrictMono, Game.addRightMono, Ordinal.toGame_nmul, Surreal.nat_toGame, Ordinal.toGame_lf_iff, Game.bddAbove_range_of_small, Game.small_setOf_birthday_lt, Ordinal.toGame_inj, Game.neg_birthday_le, Game.add_lf_add_left, Surreal.zero_toGame, Game.bddBelow_range_of_small, Game.bddAbove_of_small, Ordinal.toGame_injective, Game.add_lf_add_right, Surreal.one_toGame, Ordinal.toGame_nadd, Game.addLeftStrictMono, Ordinal.toGame_natCast, Game.not_lf, Ordinal.toGame_le_iff

SetTheory.Game

Definitions

NameCategoryTheorems
Fuzzy 📖MathDef
1 mathmath: SetTheory.PGame.fuzzy_iff_game_fuzzy
LF 📖MathDef
5 mathmath: not_le, instTrichotomousLF, Ordinal.toGame_lf_iff, SetTheory.PGame.lf_iff_game_lf, not_lf
instAdd 📖CompOp
12 mathmath: birthday_add_le, addLeftMono, SetTheory.PGame.Impartial.mk'_add_self, SetTheory.PGame.quot_left_distrib, addRightStrictMono, addRightMono, add_lf_add_left, SetTheory.PGame.quot_right_distrib, add_lf_add_right, SetTheory.PGame.quot_add, Ordinal.toGame_nadd, addLeftStrictMono
instAddCommGroupWithOneGame 📖CompOp
14 mathmath: birthday_sub_le, SetTheory.PGame.quot_one, birthday_natCast, SetTheory.PGame.quot_right_distrib_sub, Ordinal.toGame_one, SetTheory.PGame.quot_natCast, SetTheory.PGame.quot_left_distrib_sub, birthday_one, isOrderedAddMonoid, Surreal.nat_toGame, Surreal.zero_toGame, SetTheory.PGame.quot_sub, Surreal.one_toGame, Ordinal.toGame_natCast
instInhabited 📖CompOp
instNeg 📖CompOp
10 mathmath: birthday_neg, SetTheory.PGame.quot_neg_mul, SetTheory.PGame.quot_mul_neg, SetTheory.PGame.rightMoves_mul_iff, Surreal.Multiplication.mulOption_lt, SetTheory.PGame.Impartial.mk'_neg_equiv_self, Surreal.Multiplication.mulOption_lt_iff_P1, neg_birthday_le, Surreal.Multiplication.mulOption_lt_of_lt, SetTheory.PGame.quot_neg
instPartialOrderGame 📖CompOp
35 mathmath: addLeftMono, Ordinal.toGame_lt_iff, Surreal.Multiplication.mulOption_lt_mul_iff_P3, not_le, Ordinal.toGame_one, SetTheory.PGame.lt_iff_game_lt, Surreal.Multiplication.mulOption_lt_mul_of_equiv, birthday_ordinalToGame, le_birthday, Surreal.Multiplication.mulOption_lt, bddBelow_of_small, Ordinal.mk_toPGame, isOrderedAddMonoid, Ordinal.toGame_zero, addRightStrictMono, Surreal.Multiplication.mulOption_lt_iff_P1, addRightMono, Ordinal.toGame_nmul, Surreal.nat_toGame, Ordinal.toGame_lf_iff, bddAbove_range_of_small, SetTheory.PGame.le_iff_game_le, Ordinal.toGame_inj, neg_birthday_le, Surreal.Multiplication.mulOption_lt_of_lt, Surreal.zero_toGame, bddBelow_range_of_small, bddAbove_of_small, Ordinal.toGame_injective, Surreal.one_toGame, Ordinal.toGame_nadd, addLeftStrictMono, Ordinal.toGame_natCast, not_lf, Ordinal.toGame_le_iff
instZero 📖CompOp
9 mathmath: SetTheory.PGame.Impartial.mk'_add_self, zero_def, birthday_zero, birthday_eq_zero, Ordinal.toGame_zero, SetTheory.PGame.quot_mul_zero, Surreal.zero_toGame, SetTheory.PGame.quot_zero_mul, SetTheory.PGame.quot_zero

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftMono 📖mathematicalAddLeftMono
SetTheory.Game
instAdd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
add_le_add_right
SetTheory.PGame.addLeftMono
addLeftStrictMono 📖mathematicalAddLeftStrictMono
SetTheory.Game
instAdd
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderGame
add_lt_add_right
SetTheory.PGame.addLeftStrictMono
addRightMono 📖mathematicalAddRightMono
SetTheory.Game
instAdd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
add_le_add_left
SetTheory.PGame.addRightMono
addRightStrictMono 📖mathematicalAddRightStrictMono
SetTheory.Game
instAdd
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderGame
add_lt_add_left
SetTheory.PGame.addRightStrictMono
add_lf_add_left 📖mathematicalLFSetTheory.Game
instAdd
SetTheory.PGame.add_lf_add_left
add_lf_add_right 📖mathematicalLFSetTheory.Game
instAdd
SetTheory.PGame.add_lf_add_right
bddAbove_of_small 📖mathematicalBddAbove
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
Subtype.range_coe_subtype
bddAbove_range_of_small
bddAbove_range_of_small 📖mathematicalBddAbove
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
Set.range
SetTheory.PGame.bddAbove_range_of_small
Set.forall_mem_range
Quotient.out_eq
Set.mem_range_self
bddBelow_of_small 📖mathematicalBddBelow
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
Subtype.range_coe_subtype
bddBelow_range_of_small
bddBelow_range_of_small 📖mathematicalBddBelow
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
Set.range
SetTheory.PGame.bddBelow_range_of_small
Set.forall_mem_range
Quotient.out_eq
Set.mem_range_self
instTrichotomousLF 📖mathematicalSetTheory.Game
LF
Quotient.eq
SetTheory.PGame.lf_or_equiv_or_gf
isOrderedAddMonoid 📖mathematicalIsOrderedAddMonoid
SetTheory.Game
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
instAddCommGroupWithOneGame
instPartialOrderGame
add_le_add_left
addRightMono
not_le 📖mathematicalSetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
LF
SetTheory.PGame.not_le
not_lf 📖mathematicalLF
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
SetTheory.PGame.not_lf
zero_def 📖mathematicalSetTheory.Game
instZero
SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero

SetTheory.PGame

Definitions

NameCategoryTheorems
InvTy 📖CompData
1 mathmath: instIsEmptyInvTyTrue
instDiv 📖CompOp
instInv 📖CompOp
6 mathmath: inv_eq_of_pos, inv_one_equiv, inv_eq_of_lf_zero, inv_zero, inv_eq_of_equiv_zero, inv_one
instMul 📖CompOp
61 mathmath: quot_neg_mul, right_distrib_equiv, mk_mul_moveRight_inl, one_mul_equiv, Surreal.Multiplication.numeric_mul_option, Surreal.Multiplication.mulOption_lt_mul_iff_P3, isEmpty_leftMoves_mul, quot_right_distrib_sub, neg_mk_mul_moveRight_inl, quot_mul_neg, mul_moveRight_inl, Ordinal.toPGame_nmul, rightMoves_mul_iff, mul_moveRight_inr, quot_mul_one, mul_moveLeft_inl, Surreal.Multiplication.numeric_of_ih, neg_mk_mul_moveLeft_inr, quot_left_distrib_sub, Surreal.Multiplication.mulOption_lt_mul_of_equiv, Numeric.mul, mul_one_equiv, mul_moveLeft_inr, Surreal.Multiplication.numeric_option_mul_option, mul_zero_equiv, quot_left_distrib, left_distrib_equiv, zero_mul, mul_assoc_equiv, quot_one_mul, leftMoves_mul_iff, Surreal.Multiplication.mul_right_le_of_equiv, Equiv.mul_congr_right, mul_comm_equiv, quot_mul_comm, rightMoves_mul, Ordinal.toGame_nmul, quot_mul_zero, Surreal.Multiplication.numeric_option_mul, Surreal.Multiplication.P1_of_ih, zero_mul_equiv, quot_mul_assoc, leftMoves_mul, one_mul, mk_mul_moveLeft_inl, Equiv.mul_congr, Numeric.mul_pos, mk_mul_moveRight_inr, quot_right_distrib, isEmpty_rightMoves_mul, quot_zero_mul, Equiv.mul_congr_left, neg_mk_mul_moveLeft_inl, mk_mul_moveLeft_inr, mul_one, mul_neg, neg_mk_mul_moveRight_inr, quot_neg_mul_neg, mul_comm, neg_mul, mul_zero
inv' 📖CompOp
6 mathmath: inv_eq_of_pos, inv'_one_equiv, zero_lf_inv', inv'_one, inv_eq_of_lf_zero, inv'_zero_equiv
inv'One 📖CompOp
inv'Zero 📖CompOp
invOne 📖CompOp
invVal 📖CompOp
1 mathmath: invVal_isEmpty
mulCommRelabelling 📖CompOp
mulNegRelabelling 📖CompOp
mulOneRelabelling 📖CompOp
mulOption 📖CompOp
9 mathmath: Surreal.Multiplication.mulOption_lt_mul_iff_P3, mulOption_neg_neg, rightMoves_mul_iff, Surreal.Multiplication.mulOption_lt_mul_of_equiv, Surreal.Multiplication.mulOption_lt, mulOption_symm, leftMoves_mul_iff, Surreal.Multiplication.mulOption_lt_iff_P1, Surreal.Multiplication.mulOption_lt_of_lt
mulZeroRelabelling 📖CompOp
negMulRelabelling 📖CompOp
oneMulRelabelling 📖CompOp
toLeftMovesMul 📖CompOp
2 mathmath: mul_moveLeft_inl, mul_moveLeft_inr
toRightMovesMul 📖CompOp
2 mathmath: mul_moveRight_inl, mul_moveRight_inr
uniqueInvTy 📖CompOp
zeroMulRelabelling 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_iff_game_eq 📖mathematicalSetTheory.PGame
setoid
Quotient.eq'
fuzzy_iff_game_fuzzy 📖mathematicalFuzzy
SetTheory.Game.Fuzzy
SetTheory.PGame
setoid
game_eq 📖SetTheory.PGame
setoid
equiv_iff_game_eq
instIsEmptyInvTyTrue 📖mathematicalIsEmpty
InvTy
inv'_one 📖mathematicalIdentical
inv'
SetTheory.PGame
instOnePGame
Identical.ext_iff
invVal_isEmpty
PEmpty.instIsEmpty
instIsEmptyInvTyTrue
Subtype.isEmpty_false
inv'_one_equiv 📖mathematicalSetTheory.PGame
setoid
inv'
instOnePGame
Identical.equiv
inv'_one
inv'_zero_equiv 📖mathematicalSetTheory.PGame
setoid
inv'
instZero
instOnePGame
Relabelling.equiv
invVal_isEmpty 📖mathematicalinvVal
SetTheory.PGame
instZero
inv_eq_of_equiv_zero 📖mathematicalSetTheory.PGame
setoid
instZero
instInv
inv_eq_of_lf_zero 📖mathematicalLF
SetTheory.PGame
instZero
instInv
instNeg
inv'
LF.not_equiv
LF.not_gt
inv_eq_of_pos 📖mathematicalSetTheory.PGame
Preorder.toLT
instPreorder
instZero
instInv
inv'
LF.not_equiv'
LT.lt.lf
inv_one 📖mathematicalIdentical
SetTheory.PGame
instInv
instOnePGame
inv_eq_of_pos
zero_lt_one
inv'_one
inv_one_equiv 📖mathematicalSetTheory.PGame
setoid
instInv
instOnePGame
Identical.equiv
inv_one
inv_zero 📖mathematicalSetTheory.PGame
instInv
instZero
inv_eq_of_equiv_zero
equiv_refl
isEmpty_leftMoves_mul 📖mathematicalIsEmpty
LeftMoves
SetTheory.PGame
instMul
isEmpty_rightMoves_mul 📖mathematicalIsEmpty
RightMoves
SetTheory.PGame
instMul
le_iff_game_le 📖mathematicalSetTheory.PGame
le
setoid
Preorder.toLE
PartialOrder.toPreorder
SetTheory.Game.instPartialOrderGame
leftMoves_mul 📖mathematicalLeftMoves
SetTheory.PGame
instMul
RightMoves
leftMoves_mul_cases 📖DFunLike.coe
Equiv
LeftMoves
RightMoves
SetTheory.PGame
instMul
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesMul
Equiv.apply_symm_apply
leftMoves_mul_iff 📖mathematicalSetTheory.PGame
setoid
moveLeft
instMul
mulOption
instNeg
neg_def
quot_neg_mul_neg
left_distrib_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
instAdd
quot_left_distrib
lf_iff_game_lf 📖mathematicalLF
SetTheory.Game.LF
SetTheory.PGame
setoid
lt_iff_game_lt 📖mathematicalSetTheory.PGame
Preorder.toLT
instPreorder
setoid
PartialOrder.toPreorder
SetTheory.Game.instPartialOrderGame
mk_mul_moveLeft_inl 📖mathematicalmoveLeft
SetTheory.PGame
instMul
instSub
instAdd
mk_mul_moveLeft_inr 📖mathematicalmoveLeft
SetTheory.PGame
instMul
instSub
instAdd
mk_mul_moveRight_inl 📖mathematicalmoveRight
SetTheory.PGame
instMul
instSub
instAdd
mk_mul_moveRight_inr 📖mathematicalmoveRight
SetTheory.PGame
instMul
instSub
instAdd
mulOption_neg_neg 📖mathematicalmulOption
SetTheory.PGame
instNeg
DFunLike.coe
Equiv
RightMoves
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNeg
toRightMovesNeg
neg_neg
moveLeft_neg
Equiv.symm_apply_apply
moveRight_neg
mulOption_symm 📖mathematicalSetTheory.PGame
setoid
mulOption
add_comm
quot_mul_comm
mul_assoc_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
quot_mul_assoc
mul_comm 📖mathematicalIdentical
SetTheory.PGame
instMul
mul_comm_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
quot_mul_comm
mul_moveLeft_inl 📖mathematicalmoveLeft
SetTheory.PGame
instMul
DFunLike.coe
Equiv
LeftMoves
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesMul
instSub
instAdd
mul_moveLeft_inr 📖mathematicalmoveLeft
SetTheory.PGame
instMul
DFunLike.coe
Equiv
LeftMoves
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesMul
instSub
instAdd
moveRight
mul_moveRight_inl 📖mathematicalmoveRight
SetTheory.PGame
instMul
DFunLike.coe
Equiv
LeftMoves
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesMul
instSub
instAdd
moveLeft
mul_moveRight_inr 📖mathematicalmoveRight
SetTheory.PGame
instMul
DFunLike.coe
Equiv
LeftMoves
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesMul
instSub
instAdd
moveLeft
mul_neg 📖mathematicalSetTheory.PGame
instMul
instNeg
mul_one 📖mathematicalIdentical
SetTheory.PGame
instMul
instOnePGame
Identical.trans
mul_comm
one_mul
mul_one_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
instOnePGame
quot_mul_one
mul_zero 📖mathematicalIdentical
SetTheory.PGame
instMul
instZero
identical_zero
isEmpty_leftMoves_mul
instIsEmptySum
Prod.isEmpty_right
isEmpty_zero_leftMoves
isEmpty_zero_rightMoves
isEmpty_rightMoves_mul
mul_zero_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
instZero
Identical.equiv
mul_zero
neg_mk_mul_moveLeft_inl 📖mathematicalmoveLeft
SetTheory.PGame
instNeg
instMul
instSub
instAdd
neg_mk_mul_moveLeft_inr 📖mathematicalmoveLeft
SetTheory.PGame
instNeg
instMul
instSub
instAdd
neg_mk_mul_moveRight_inl 📖mathematicalmoveRight
SetTheory.PGame
instNeg
instMul
instSub
instAdd
neg_mk_mul_moveRight_inr 📖mathematicalmoveRight
SetTheory.PGame
instNeg
instMul
instSub
instAdd
neg_mul 📖mathematicalIdentical
SetTheory.PGame
instMul
instNeg
Identical.trans
mul_comm
of_eq
instReflIdentical
mul_neg
Identical.neg
one_mul 📖mathematicalIdentical
SetTheory.PGame
instMul
instOnePGame
Identical.of_equiv
Prod.isEmpty_left
PEmpty.instIsEmpty
Identical.trans
Identical.sub
Identical.add
zero_mul
zero_add
sub_zero
one_mul_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
instOnePGame
quot_one_mul
quot_add 📖mathematicalSetTheory.PGame
setoid
instAdd
SetTheory.Game.instAdd
quot_eq_of_mk'_quot_eq 📖SetTheory.PGame
setoid
moveLeft
DFunLike.coe
Equiv
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
moveRight
RightMoves
game_eq
Equiv.of_equiv
equiv_iff_game_eq
quot_left_distrib 📖mathematicalSetTheory.PGame
setoid
instMul
instAdd
SetTheory.Game.instAdd
quot_left_distrib_sub 📖mathematicalSetTheory.PGame
setoid
instMul
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
quot_left_distrib
quot_mul_neg
quot_mul_assoc 📖mathematicalSetTheory.PGame
setoid
instMul
quot_mul_comm 📖mathematicalSetTheory.PGame
setoid
instMul
game_eq
Identical.equiv
mul_comm
quot_mul_neg 📖mathematicalSetTheory.PGame
setoid
instMul
instNeg
SetTheory.Game.instNeg
game_eq
mul_neg
quot_mul_one 📖mathematicalSetTheory.PGame
setoid
instMul
instOnePGame
game_eq
Identical.equiv
mul_one
quot_mul_zero 📖mathematicalSetTheory.PGame
setoid
instMul
instZero
SetTheory.Game.instZero
game_eq
mul_zero_equiv
quot_natCast 📖mathematicalSetTheory.PGame
setoid
instNatCast
SetTheory.Game
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
nat_succ
quot_add
Nat.cast_add
Nat.cast_one
quot_neg 📖mathematicalSetTheory.PGame
setoid
instNeg
SetTheory.Game.instNeg
quot_neg_mul 📖mathematicalSetTheory.PGame
setoid
instMul
instNeg
SetTheory.Game.instNeg
game_eq
Identical.equiv
neg_mul
quot_neg_mul_neg 📖mathematicalSetTheory.PGame
setoid
instMul
instNeg
mul_neg
quot_neg_mul
neg_neg
quot_one 📖mathematicalSetTheory.PGame
setoid
instOnePGame
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
quot_one_mul 📖mathematicalSetTheory.PGame
setoid
instMul
instOnePGame
game_eq
Identical.equiv
one_mul
quot_right_distrib 📖mathematicalSetTheory.PGame
setoid
instMul
instAdd
SetTheory.Game.instAdd
quot_mul_comm
quot_left_distrib
quot_right_distrib_sub 📖mathematicalSetTheory.PGame
setoid
instMul
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
quot_right_distrib
quot_neg_mul
quot_sub 📖mathematicalSetTheory.PGame
setoid
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
quot_zero 📖mathematicalSetTheory.PGame
setoid
instZero
SetTheory.Game.instZero
quot_zero_mul 📖mathematicalSetTheory.PGame
setoid
instMul
instZero
SetTheory.Game.instZero
game_eq
zero_mul_equiv
rightMoves_mul 📖mathematicalRightMoves
SetTheory.PGame
instMul
LeftMoves
rightMoves_mul_cases 📖DFunLike.coe
Equiv
LeftMoves
RightMoves
SetTheory.PGame
instMul
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesMul
Equiv.apply_symm_apply
rightMoves_mul_iff 📖mathematicalSetTheory.PGame
setoid
moveRight
instMul
SetTheory.Game.instNeg
mulOption
instNeg
neg_sub'
neg_add
neg_def
quot_mul_neg
neg_neg
quot_neg_mul
right_distrib_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
instAdd
quot_right_distrib
zero_lf_inv' 📖mathematicalLF
SetTheory.PGame
instZero
inv'
zero_mul 📖mathematicalIdentical
SetTheory.PGame
instMul
instZero
identical_zero
isEmpty_leftMoves_mul
instIsEmptySum
Prod.isEmpty_left
isEmpty_zero_leftMoves
isEmpty_zero_rightMoves
isEmpty_rightMoves_mul
zero_mul_equiv 📖mathematicalSetTheory.PGame
setoid
instMul
instZero
Identical.equiv
zero_mul

SetTheory.PGame.InvTy

Definitions

NameCategoryTheorems
instInhabited 📖CompOp

---

← Back to Index