Documentation Verification Report

Birthday

📁 Source: Mathlib/SetTheory/Game/Birthday.lean

Statistics

MetricCount
Definitionsbirthday, birthday
2
Theoremsbirthday_add_le, birthday_eq_pGameBirthday, birthday_eq_zero, birthday_natCast, birthday_neg, birthday_ofNat, birthday_one, birthday_ordinalToGame, birthday_quot_le_pGameBirthday, birthday_star, birthday_sub_le, birthday_zero, le_birthday, neg_birthday_le, small_setOf_birthday_lt, birthday_congr, birthday_add, birthday_def, birthday_eq_zero, birthday_moveLeft_lt, birthday_moveRight_lt, birthday_natCast, birthday_neg, birthday_one, birthday_ordinalToPGame, birthday_star, birthday_sub, birthday_zero, le_birthday, lt_birthday_iff, neg_birthday_le
31
Total33

SetTheory.Game

Definitions

NameCategoryTheorems
birthday 📖CompOp
15 mathmath: birthday_add_le, birthday_neg, birthday_sub_le, birthday_natCast, birthday_eq_pGameBirthday, birthday_zero, birthday_one, birthday_ordinalToGame, le_birthday, birthday_eq_zero, birthday_ofNat, small_setOf_birthday_lt, neg_birthday_le, birthday_star, birthday_quot_le_pGameBirthday

Theorems

NameKindAssumesProvesValidatesDepends On
birthday_add_le 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
SetTheory.Game
instAdd
Ordinal.nadd
birthday_eq_pGameBirthday
SetTheory.PGame.birthday_add
birthday_quot_le_pGameBirthday
birthday_eq_pGameBirthday 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.birthday
birthday
csInf_mem
Ordinal.wellFoundedLT
Set.image_nonempty
Quotient.out_eq
birthday_eq_zero 📖mathematicalbirthday
Ordinal
Ordinal.zero
SetTheory.Game
instZero
birthday_eq_pGameBirthday
SetTheory.PGame.game_eq
SetTheory.PGame.Equiv.isEmpty
SetTheory.PGame.birthday_eq_zero
birthday_zero
birthday_natCast 📖mathematicalbirthday
SetTheory.Game
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOneGame
Ordinal
Ordinal.addMonoidWithOne
Ordinal.toGame_natCast
birthday_ordinalToGame
birthday_neg 📖mathematicalbirthday
SetTheory.Game
instNeg
le_antisymm
neg_neg
birthday_ofNat 📖mathematicalbirthday
Ordinal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
birthday_natCast
birthday_one 📖mathematicalbirthday
SetTheory.Game
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOneGame
Ordinal
Ordinal.one
Nat.cast_one
birthday_natCast
birthday_ordinalToGame 📖mathematicalbirthday
DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instPartialOrderGame
instFunLikeOrderEmbedding
Ordinal.toGame
le_antisymm
SetTheory.PGame.birthday_ordinalToPGame
birthday_quot_le_pGameBirthday
birthday_eq_pGameBirthday
Ordinal.toPGame_le_iff
LE.le.trans
SetTheory.PGame.equiv_iff_game_eq
Ordinal.mk_toPGame
SetTheory.PGame.le_birthday
birthday_quot_le_pGameBirthday 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.birthday
csInf_le'
birthday_star 📖mathematicalbirthday
SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.star
Ordinal
Ordinal.one
le_antisymm
SetTheory.PGame.birthday_star
birthday_quot_le_pGameBirthday
Ordinal.one_le_iff_ne_zero
birthday_eq_zero
zero_def
SetTheory.PGame.equiv_iff_game_eq
SetTheory.PGame.Fuzzy.not_equiv
SetTheory.PGame.star_fuzzy_zero
birthday_sub_le 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
SetTheory.Game
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOneGame
Ordinal.nadd
LE.le.trans_eq
birthday_add_le
birthday_neg
birthday_zero 📖mathematicalbirthday
SetTheory.Game
instZero
Ordinal
Ordinal.zero
nonpos_iff_eq_zero
Ordinal.canonicallyOrderedAdd
SetTheory.PGame.birthday_zero
birthday_quot_le_pGameBirthday
le_birthday 📖mathematicalSetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
DFunLike.coe
OrderEmbedding
Ordinal
Ordinal.partialOrder
instFunLikeOrderEmbedding
Ordinal.toGame
birthday
birthday_eq_pGameBirthday
LE.le.trans
SetTheory.PGame.le_birthday
Ordinal.toPGame_le_iff
le_refl
neg_birthday_le 📖mathematicalSetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderGame
instNeg
DFunLike.coe
OrderEmbedding
Ordinal
Ordinal.partialOrder
instFunLikeOrderEmbedding
Ordinal.toGame
birthday
neg_le
addLeftMono
addRightMono
birthday_neg
le_birthday
small_setOf_birthday_lt 📖mathematicalSmall
SetTheory.Game
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
Ordinal.induction
small_biUnion
Ordinal.small_Iio
Ordinal.zero_or_succ_or_isSuccLimit
Ordinal.canonicallyOrderedAdd
small_empty
Ordinal.instNoMaxOrder
small_union
Order.lt_succ
small_subtype
birthday_eq_pGameBirthday
SetTheory.PGame.game_eq
SetTheory.PGame.Equiv.of_exists
Quotient.out_eq
le_rfl
LE.le.trans_lt
birthday_quot_le_pGameBirthday
SetTheory.PGame.birthday_moveLeft_lt
Set.iUnion_congr_Prop
Order.Iio_succ
Equiv.symm_apply_apply
Quotient.mk_out
SetTheory.PGame.birthday_moveRight_lt
small_subset
small_range
small_prod
small_set
Order.IsSuccLimit.lt_iff_exists_lt

SetTheory.PGame

Definitions

NameCategoryTheorems
birthday 📖CompOp
21 mathmath: birthday_add, birthday_one, le_birthday, birthday_moveLeft_lt, birthday_sub, short_birthday, SetTheory.Game.birthday_eq_pGameBirthday, lt_birthday_iff, birthday_star, birthday_zero, birthday_half, birthday_def, birthday_eq_zero, birthday_ordinalToPGame, birthday_neg, Relabelling.birthday_congr, nim_birthday, birthday_moveRight_lt, birthday_natCast, SetTheory.Game.birthday_quot_le_pGameBirthday, neg_birthday_le

Theorems

NameKindAssumesProvesValidatesDepends On
birthday_add 📖mathematicalbirthday
SetTheory.PGame
instAdd
Ordinal.nadd
birthday_def 📖mathematicalbirthday
Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Ordinal.lsub
LeftMoves
moveLeft
RightMoves
moveRight
birthday.eq_1
birthday_eq_zero 📖mathematicalbirthday
Ordinal
Ordinal.zero
IsEmpty
LeftMoves
RightMoves
birthday_def
Ordinal.max_eq_zero
Ordinal.lsub_eq_zero_iff
birthday_moveLeft_lt 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
moveLeft
birthday.eq_1
lt_max_of_lt_left
Ordinal.lt_lsub
birthday_moveRight_lt 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
moveRight
birthday.eq_1
lt_max_of_lt_right
Ordinal.lt_lsub
birthday_natCast 📖mathematicalbirthday
SetTheory.PGame
instNatCast
Ordinal
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
birthday_zero
birthday_add
birthday_one
Ordinal.nadd_one
Nat.cast_add
Nat.cast_one
birthday_neg 📖mathematicalbirthday
SetTheory.PGame
instNeg
birthday_def
max_comm
birthday_one 📖mathematicalbirthday
SetTheory.PGame
instOnePGame
Ordinal
Ordinal.one
birthday_def
birthday_zero
Ordinal.lsub_unique
Ordinal.succ_zero
Ordinal.lsub_empty
PEmpty.instIsEmpty
sup_of_le_left
Ordinal.canonicallyOrderedAdd
birthday_ordinalToPGame 📖mathematicalbirthday
Ordinal.toPGame
Ordinal.induction
Ordinal.toPGame.eq_1
birthday.eq_1
Ordinal.lsub_empty
PEmpty.instIsEmpty
Ordinal.max_zero_right
isWellOrder_lt
wellFoundedLT_toType
Ordinal.lsub_typein
Ordinal.typein_lt_self
birthday_star 📖mathematicalbirthday
star
Ordinal
Ordinal.one
birthday_def
birthday_zero
Ordinal.lsub_unique
Ordinal.succ_zero
max_self
birthday_sub 📖mathematicalbirthday
SetTheory.PGame
instSub
Ordinal.nadd
birthday_add
birthday_neg
birthday_zero 📖mathematicalbirthday
SetTheory.PGame
instZero
Ordinal
Ordinal.zero
PEmpty.instIsEmpty
le_birthday 📖mathematicalSetTheory.PGame
le
Ordinal.toPGame
birthday
le_def
birthday_moveLeft_lt
Ordinal.toPGame_moveLeft'
Equiv.symm_apply_apply
Ordinal.isEmpty_toPGame_rightMoves
lt_birthday_iff 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
birthday
Preorder.toLE
moveLeft
moveRight
birthday_def
lt_max_iff
Ordinal.lt_lsub_iff
LE.le.trans_lt
birthday_moveLeft_lt
birthday_moveRight_lt
neg_birthday_le 📖mathematicalSetTheory.PGame
le
instNeg
Ordinal.toPGame
birthday
birthday_neg
le_birthday

SetTheory.PGame.Relabelling

Theorems

NameKindAssumesProvesValidatesDepends On
birthday_congr 📖mathematicalSetTheory.PGame.birthdaySetTheory.PGame.birthday.eq_def
Ordinal.lsub_eq_of_range_eq
Set.ext

---

← Back to Index