Documentation Verification Report

Impartial

📁 Source: Mathlib/SetTheory/Game/Impartial.lean

Statistics

MetricCount
DefinitionsImpartial
1
Theoremsadd_self, equiv_iff_add_equiv_zero, equiv_iff_add_equiv_zero', equiv_or_fuzzy_zero, equiv_zero_iff_ge, equiv_zero_iff_le, exists_left_move_equiv_iff_fuzzy_zero, exists_right_move_equiv_iff_fuzzy_zero, forall_leftMoves_fuzzy_iff_equiv_zero, forall_rightMoves_fuzzy_iff_equiv_zero, fuzzy_zero_iff_gf, fuzzy_zero_iff_lf, impartial_add, impartial_congr, impartial_neg, impartial_star, impartial_zero, le_zero_iff, lf_zero_iff, mk'_add_self, mk'_neg_equiv_self, moveLeft_impartial, moveRight_impartial, neg_equiv_self, nonneg, nonpos, not_equiv_zero_iff, not_fuzzy_zero_iff, out, impartial_def
30
Total31

SetTheory.PGame

Definitions

NameCategoryTheorems
Impartial 📖CompData
9 mathmath: impartial_nim, Impartial.impartial_star, Impartial.moveRight_impartial, Impartial.moveLeft_impartial, impartial_def, Impartial.impartial_neg, Impartial.impartial_congr, Impartial.impartial_add, Impartial.impartial_zero

Theorems

NameKindAssumesProvesValidatesDepends On
impartial_def 📖mathematicalImpartial
SetTheory.PGame
setoid
instNeg
moveLeft
moveRight

SetTheory.PGame.Impartial

Theorems

NameKindAssumesProvesValidatesDepends On
add_self 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instAdd
SetTheory.PGame.instZero
SetTheory.PGame.Equiv.trans
SetTheory.PGame.add_congr_left
neg_equiv_self
SetTheory.PGame.neg_add_cancel_equiv
equiv_iff_add_equiv_zero 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instAdd
SetTheory.PGame.instZero
SetTheory.PGame.equiv_iff_game_eq
add_right_cancel_iff
AddRightCancelSemigroup.toIsRightCancelAdd
mk'_add_self
SetTheory.PGame.quot_add
SetTheory.PGame.quot_zero
equiv_iff_add_equiv_zero' 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instAdd
SetTheory.PGame.instZero
SetTheory.PGame.equiv_iff_game_eq
add_left_cancel_iff
AddLeftCancelSemigroup.toIsLeftCancelAdd
mk'_add_self
SetTheory.PGame.quot_add
SetTheory.PGame.quot_zero
equiv_or_fuzzy_zero 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero
SetTheory.PGame.Fuzzy
SetTheory.PGame.lt_or_equiv_or_gt_or_fuzzy
nonneg
nonpos
equiv_zero_iff_ge 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero
SetTheory.PGame.le
le_zero_iff
equiv_zero_iff_le 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero
SetTheory.PGame.le
le_zero_iff
exists_left_move_equiv_iff_fuzzy_zero 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.moveLeft
SetTheory.PGame.instZero
SetTheory.PGame.Fuzzy
fuzzy_zero_iff_gf
SetTheory.PGame.lf_of_le_moveLeft
SetTheory.PGame.zero_lf_le
equiv_zero_iff_ge
moveLeft_impartial
exists_right_move_equiv_iff_fuzzy_zero 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.moveRight
SetTheory.PGame.instZero
SetTheory.PGame.Fuzzy
fuzzy_zero_iff_lf
SetTheory.PGame.lf_of_moveRight_le
SetTheory.PGame.lf_zero_le
equiv_zero_iff_le
moveRight_impartial
forall_leftMoves_fuzzy_iff_equiv_zero 📖mathematicalSetTheory.PGame.Fuzzy
SetTheory.PGame.moveLeft
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.setoid
equiv_zero_iff_le
SetTheory.PGame.le_zero_lf
fuzzy_zero_iff_lf
moveLeft_impartial
LE.le.moveLeft_lf
forall_rightMoves_fuzzy_iff_equiv_zero 📖mathematicalSetTheory.PGame.Fuzzy
SetTheory.PGame.moveRight
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.setoid
equiv_zero_iff_ge
SetTheory.PGame.zero_le_lf
fuzzy_zero_iff_gf
moveRight_impartial
LE.le.lf_moveRight
fuzzy_zero_iff_gf 📖mathematicalSetTheory.PGame.Fuzzy
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.LF
lf_zero_iff
fuzzy_zero_iff_lf 📖mathematicalSetTheory.PGame.Fuzzy
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.LF
lf_zero_iff
impartial_add 📖mathematicalSetTheory.PGame.Impartial
SetTheory.PGame
SetTheory.PGame.instAdd
impartial_congr 📖mathematicalSetTheory.PGame.Impartial
impartial_neg 📖mathematicalSetTheory.PGame.Impartial
SetTheory.PGame
SetTheory.PGame.instNeg
impartial_star 📖mathematicalSetTheory.PGame.Impartial
SetTheory.PGame.star
SetTheory.PGame.impartial_def
SetTheory.PGame.neg_star
impartial_zero
impartial_zero 📖mathematicalSetTheory.PGame.Impartial
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.impartial_def
neg_zero
PEmpty.instIsEmpty
le_zero_iff 📖mathematicalSetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.instZero
SetTheory.PGame.zero_le_neg_iff
SetTheory.PGame.le_congr_right
neg_equiv_self
lf_zero_iff 📖mathematicalSetTheory.PGame.LF
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.zero_lf_neg_iff
SetTheory.PGame.lf_congr_right
neg_equiv_self
mk'_add_self 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.Game.instAdd
SetTheory.Game.instZero
SetTheory.PGame.game_eq
add_self
mk'_neg_equiv_self 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.Game.instNeg
SetTheory.PGame.game_eq
SetTheory.PGame.Equiv.symm
neg_equiv_self
moveLeft_impartial 📖mathematicalSetTheory.PGame.Impartial
SetTheory.PGame.moveLeft
SetTheory.PGame.impartial_def
moveRight_impartial 📖mathematicalSetTheory.PGame.Impartial
SetTheory.PGame.moveRight
SetTheory.PGame.impartial_def
neg_equiv_self 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instNeg
SetTheory.PGame.impartial_def
nonneg 📖mathematicalSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.instZero
nonpos
impartial_neg
nonpos 📖mathematicalSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.instZero
lt_asymm
SetTheory.PGame.neg_lt_neg_iff
neg_zero
SetTheory.PGame.lt_congr_right
neg_equiv_self
not_equiv_zero_iff 📖mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero
SetTheory.PGame.Fuzzy
equiv_or_fuzzy_zero
SetTheory.PGame.Fuzzy.not_equiv
not_fuzzy_zero_iff 📖mathematicalSetTheory.PGame.Fuzzy
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.setoid
equiv_or_fuzzy_zero
SetTheory.PGame.Equiv.not_fuzzy
out 📖

---

← Back to Index