Documentation Verification Report

Nim

πŸ“ Source: Mathlib/SetTheory/Game/Nim.lean

Statistics

MetricCount
DefinitionsgrundyValue, leftMovesNimRecOn, nim, nimOneRelabelling, nimZeroRelabelling, rightMovesNimRecOn, toLeftMovesNim, toRightMovesNim, uniqueNimOneLeftMoves, uniqueNimOneRightMoves
10
Theoremsdefault_nim_one_leftMoves_eq, default_nim_one_rightMoves_eq, equiv_nim_grundyValue, exists_grundyValue_moveLeft_of_lt, exists_grundyValue_moveRight_of_lt, grundyValue_add, grundyValue_eq_iff_equiv, grundyValue_eq_iff_equiv_nim, grundyValue_eq_sInf_moveLeft, grundyValue_eq_sInf_moveRight, grundyValue_iff_equiv_zero, grundyValue_le_of_forall_moveLeft, grundyValue_le_of_forall_moveRight, grundyValue_ne_moveLeft, grundyValue_ne_moveRight, grundyValue_neg, grundyValue_nim_add_nim, grundyValue_star, grundyValue_zero, impartial_nim, isEmpty_nim_zero_leftMoves, isEmpty_nim_zero_rightMoves, le_grundyValue_of_Iio_subset_moveLeft, le_grundyValue_of_Iio_subset_moveRight, leftMoves_nim, moveLeft_nim, moveLeft_nim_heq, moveLeft_toLeftMovesNim, moveRight_nim, moveRight_nim_heq, moveRight_toRightMovesNim, neg_nim, nim_add_equiv_zero_iff, nim_add_fuzzy_zero_iff, nim_add_nim_equiv, nim_birthday, nim_equiv_iff_eq, nim_fuzzy_zero_of_ne_zero, nim_grundyValue, nim_one_equiv, nim_one_moveLeft, nim_one_moveRight, nim_zero_equiv, rightMoves_nim, toLeftMovesNim_one_symm, toLeftMovesNim_symm_lt, toRightMovesNim_one_symm, toRightMovesNim_symm_lt
48
Total58

SetTheory.PGame

Definitions

NameCategoryTheorems
grundyValue πŸ“–CompOp
14 mathmath: grundyValue_eq_sInf_moveLeft, grundyValue_eq_iff_equiv_nim, grundyValue_nim_add_nim, grundyValue_eq_iff_equiv, grundyValue_zero, grundyValue_eq_sInf_moveRight, grundyValue_le_of_forall_moveLeft, grundyValue_star, equiv_nim_grundyValue, grundyValue_neg, nim_grundyValue, grundyValue_le_of_forall_moveRight, grundyValue_iff_equiv_zero, grundyValue_add
leftMovesNimRecOn πŸ“–CompOpβ€”
nim πŸ“–CompOp
32 mathmath: nim_add_equiv_zero_iff, default_nim_one_rightMoves_eq, impartial_nim, grundyValue_eq_iff_equiv_nim, grundyValue_nim_add_nim, isEmpty_nim_zero_leftMoves, nim_one_equiv, toRightMovesNim_one_symm, nim_fuzzy_zero_of_ne_zero, moveRight_nim, nim_one_moveLeft, default_nim_one_leftMoves_eq, equiv_nim_grundyValue, nim_add_fuzzy_zero_iff, rightMoves_nim, nim_zero_equiv, leftMoves_nim, toLeftMovesNim_symm_lt, nim_equiv_iff_eq, moveLeft_toLeftMovesNim, nim_birthday, nim_one_moveRight, nim_grundyValue, moveRight_nim_heq, neg_nim, moveLeft_nim_heq, moveLeft_nim, nim_add_nim_equiv, moveRight_toRightMovesNim, isEmpty_nim_zero_rightMoves, toRightMovesNim_symm_lt, toLeftMovesNim_one_symm
nimOneRelabelling πŸ“–CompOpβ€”
nimZeroRelabelling πŸ“–CompOpβ€”
rightMovesNimRecOn πŸ“–CompOpβ€”
toLeftMovesNim πŸ“–CompOp
5 mathmath: default_nim_one_leftMoves_eq, toLeftMovesNim_symm_lt, moveLeft_toLeftMovesNim, moveLeft_nim, toLeftMovesNim_one_symm
toRightMovesNim πŸ“–CompOp
5 mathmath: default_nim_one_rightMoves_eq, toRightMovesNim_one_symm, moveRight_nim, moveRight_toRightMovesNim, toRightMovesNim_symm_lt
uniqueNimOneLeftMoves πŸ“–CompOp
1 mathmath: default_nim_one_leftMoves_eq
uniqueNimOneRightMoves πŸ“–CompOp
1 mathmath: default_nim_one_rightMoves_eq

Theorems

NameKindAssumesProvesValidatesDepends On
default_nim_one_leftMoves_eq πŸ“–mathematicalβ€”LeftMoves
nim
Ordinal
Ordinal.one
Unique.instInhabited
uniqueNimOneLeftMoves
DFunLike.coe
Equiv
Set.Elem
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNim
Set
Set.instMembership
Ordinal.zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
β€”β€”
default_nim_one_rightMoves_eq πŸ“–mathematicalβ€”RightMoves
nim
Ordinal
Ordinal.one
Unique.instInhabited
uniqueNimOneRightMoves
DFunLike.coe
Equiv
Set.Elem
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesNim
Set
Set.instMembership
Ordinal.zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
β€”β€”
equiv_nim_grundyValue πŸ“–mathematicalβ€”SetTheory.PGame
setoid
nim
DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
Nimber.toOrdinal
grundyValue
β€”β€”
exists_grundyValue_moveLeft_of_lt πŸ“–mathematicalNimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
grundyValue
moveLeftβ€”LT.lt.not_ge
grundyValue_eq_sInf_moveLeft
csInf_le'
exists_grundyValue_moveRight_of_lt πŸ“–mathematicalNimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
grundyValue
moveRightβ€”exists_grundyValue_moveLeft_of_lt
grundyValue_neg
Impartial.moveRight_impartial
moveLeft_neg
grundyValue_add πŸ“–mathematicalβ€”grundyValue
SetTheory.PGame
instAdd
Nimber
Nimber.instAdd
β€”Nimber.toOrdinal_toNimber
grundyValue_nim_add_nim
grundyValue_eq_iff_equiv
Impartial.impartial_add
impartial_nim
add_congr
equiv_nim_grundyValue
grundyValue_eq_iff_equiv πŸ“–mathematicalβ€”grundyValue
SetTheory.PGame
setoid
β€”grundyValue_eq_iff_equiv_nim
equiv_congr_left
equiv_nim_grundyValue
grundyValue_eq_iff_equiv_nim πŸ“–mathematicalβ€”grundyValue
SetTheory.PGame
setoid
nim
DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
Nimber.toOrdinal
β€”equiv_nim_grundyValue
nim_equiv_iff_eq
Equiv.trans
Equiv.symm
grundyValue_eq_sInf_moveLeft πŸ“–mathematicalβ€”grundyValue
InfSet.sInf
Nimber
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
Compl.compl
Set
Set.instCompl
Set.range
LeftMoves
SetTheory.PGame
moveLeft
β€”grundyValue.eq_1
grundyValue_eq_sInf_moveRight πŸ“–mathematicalβ€”grundyValue
InfSet.sInf
Nimber
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
Compl.compl
Set
Set.instCompl
Set.range
RightMoves
SetTheory.PGame
moveRight
β€”grundyValue_neg
grundyValue_eq_sInf_moveLeft
Impartial.moveRight_impartial
grundyValue_iff_equiv_zero πŸ“–mathematicalβ€”grundyValue
Nimber
instZeroNimber
SetTheory.PGame
setoid
instZero
β€”grundyValue_eq_iff_equiv
Impartial.impartial_zero
grundyValue_zero
grundyValue_le_of_forall_moveLeft πŸ“–mathematicalβ€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
grundyValue
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
exists_grundyValue_moveLeft_of_lt
grundyValue_le_of_forall_moveRight πŸ“–mathematicalβ€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
grundyValue
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
exists_grundyValue_moveRight_of_lt
grundyValue_ne_moveLeft πŸ“–β€”β€”β€”β€”grundyValue_eq_sInf_moveLeft
csInf_mem
Nimber.instWellFoundedLT
nonempty_of_not_bddAbove
Nimber.not_bddAbove_compl_of_small
small_range
UnivLE.small
UnivLE.self
Set.mem_range
Set.mem_compl_iff
grundyValue_ne_moveRight πŸ“–β€”β€”β€”β€”moveLeft_neg
Equiv.symm_apply_apply
grundyValue_neg
Impartial.moveRight_impartial
grundyValue_ne_moveLeft
grundyValue_neg πŸ“–mathematicalβ€”grundyValue
SetTheory.PGame
instNeg
β€”grundyValue_eq_iff_equiv_nim
Impartial.impartial_neg
neg_equiv_iff
neg_nim
grundyValue_nim_add_nim πŸ“–mathematicalβ€”grundyValue
SetTheory.PGame
instAdd
nim
Nimber
Nimber.instAdd
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
Ordinal.toNimber
β€”β€”
grundyValue_star πŸ“–mathematicalβ€”grundyValue
star
Nimber
instOneNimber
β€”grundyValue_eq_iff_equiv_nim
Impartial.impartial_star
Equiv.symm
nim_one_equiv
grundyValue_zero πŸ“–mathematicalβ€”grundyValue
SetTheory.PGame
instZero
Nimber
instZeroNimber
β€”grundyValue_eq_iff_equiv_nim
Impartial.impartial_zero
Equiv.symm
nim_zero_equiv
impartial_nim πŸ“–mathematicalβ€”Impartial
nim
β€”Ordinal.induction
impartial_def
neg_nim
equiv_rfl
moveLeft_nim
isWellOrder_lt
wellFoundedLT_toType
Ordinal.typein_lt_self
moveRight_nim
isEmpty_nim_zero_leftMoves πŸ“–mathematicalβ€”IsEmpty
LeftMoves
nim
Ordinal
Ordinal.zero
β€”nim.eq_1
Ordinal.isEmpty_toType_zero
isEmpty_nim_zero_rightMoves πŸ“–mathematicalβ€”IsEmpty
RightMoves
nim
Ordinal
Ordinal.zero
β€”nim.eq_1
Ordinal.isEmpty_toType_zero
le_grundyValue_of_Iio_subset_moveLeft πŸ“–mathematicalSet
Nimber
Set.instHasSubset
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
Set.range
LeftMoves
SetTheory.PGame
grundyValue
moveLeft
Preorder.toLEβ€”grundyValue_ne_moveLeft
le_grundyValue_of_Iio_subset_moveRight πŸ“–mathematicalSet
Nimber
Set.instHasSubset
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
Set.range
RightMoves
SetTheory.PGame
grundyValue
moveRight
Preorder.toLEβ€”grundyValue_ne_moveRight
leftMoves_nim πŸ“–mathematicalβ€”LeftMoves
nim
Ordinal.ToType
β€”nim.eq_1
moveLeft_nim πŸ“–mathematicalβ€”moveLeft
nim
Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
Equiv
LeftMoves
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesNim
β€”congr_heq
moveLeft_nim_heq
moveLeft_nim_heq πŸ“–mathematicalβ€”moveLeft
nim
Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.ToType.toOrd
β€”nim.eq_1
moveLeft_toLeftMovesNim πŸ“–mathematicalβ€”moveLeft
nim
DFunLike.coe
Equiv
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNim
Set
Set.instMembership
β€”moveLeft_nim
Equiv.symm_apply_apply
moveRight_nim πŸ“–mathematicalβ€”moveRight
nim
Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
Equiv
RightMoves
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toRightMovesNim
β€”congr_heq
moveRight_nim_heq
moveRight_nim_heq πŸ“–mathematicalβ€”moveRight
nim
Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.ToType.toOrd
β€”nim.eq_1
moveRight_toRightMovesNim πŸ“–mathematicalβ€”moveRight
nim
DFunLike.coe
Equiv
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesNim
Set
Set.instMembership
β€”moveRight_nim
Equiv.symm_apply_apply
neg_nim πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
nim
β€”Ordinal.induction
nim.eq_1
Ordinal.typein_lt_self
nim_add_equiv_zero_iff πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
nim
instZero
β€”not_imp_not
Impartial.not_equiv_zero_iff
Impartial.impartial_add
impartial_nim
Impartial.fuzzy_zero_iff_gf
zero_lf_le
add_moveLeft_inr
moveLeft_nim
Equiv.symm_apply_apply
Impartial.add_self
fuzzy_congr_left
add_comm_equiv
Ne.lt_or_gt
nim_add_fuzzy_zero_iff πŸ“–mathematicalβ€”Fuzzy
SetTheory.PGame
instAdd
nim
instZero
β€”iff_not_comm
Impartial.not_fuzzy_zero_iff
Impartial.impartial_add
impartial_nim
nim_add_equiv_zero_iff
nim_add_nim_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
nim
DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
Nimber.toOrdinal
Nimber.instAdd
Ordinal.toNimber
β€”grundyValue_eq_iff_equiv_nim
Impartial.impartial_add
impartial_nim
grundyValue_nim_add_nim
nim_birthday πŸ“–mathematicalβ€”birthday
nim
β€”Ordinal.induction
nim.eq_1
birthday_def
max_eq_right
le_rfl
isWellOrder_lt
wellFoundedLT_toType
Ordinal.typein_lt_self
Ordinal.lsub_typein
nim_equiv_iff_eq πŸ“–mathematicalβ€”SetTheory.PGame
setoid
nim
β€”Impartial.equiv_iff_add_equiv_zero
impartial_nim
nim_add_equiv_zero_iff
nim_fuzzy_zero_of_ne_zero πŸ“–mathematicalβ€”Fuzzy
nim
SetTheory.PGame
instZero
β€”Impartial.fuzzy_zero_iff_lf
impartial_nim
lf_zero_le
pos_iff_ne_zero
Ordinal.canonicallyOrderedAdd
moveRight_nim
Equiv.symm_apply_apply
isEmpty_nim_zero_leftMoves
nim_grundyValue πŸ“–mathematicalβ€”grundyValue
nim
DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
Ordinal.toNimber
β€”grundyValue_eq_iff_equiv_nim
impartial_nim
equiv_rfl
nim_one_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
nim
Ordinal
Ordinal.one
star
β€”Relabelling.equiv
nim_one_moveLeft πŸ“–mathematicalβ€”moveLeft
nim
Ordinal
Ordinal.one
Ordinal.zero
β€”moveLeft_nim
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
toLeftMovesNim_one_symm
nim_one_moveRight πŸ“–mathematicalβ€”moveRight
nim
Ordinal
Ordinal.one
Ordinal.zero
β€”moveRight_nim
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
toRightMovesNim_one_symm
nim_zero_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
nim
Ordinal
Ordinal.zero
instZero
β€”Equiv.isEmpty
isEmpty_nim_zero_leftMoves
isEmpty_nim_zero_rightMoves
rightMoves_nim πŸ“–mathematicalβ€”RightMoves
nim
Ordinal.ToType
β€”nim.eq_1
toLeftMovesNim_one_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LeftMoves
nim
Ordinal
Ordinal.one
Set.Elem
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesNim
Set
Set.instMembership
Ordinal.zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
β€”Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
Unique.instSubsingleton
toLeftMovesNim_symm_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set
Set.instMembership
Set.Iio
DFunLike.coe
Equiv
LeftMoves
nim
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesNim
β€”Subtype.prop
toRightMovesNim_one_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
RightMoves
nim
Ordinal
Ordinal.one
Set.Elem
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toRightMovesNim
Set
Set.instMembership
Ordinal.zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
β€”Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
Unique.instSubsingleton
toRightMovesNim_symm_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set
Set.instMembership
Set.Iio
DFunLike.coe
Equiv
RightMoves
nim
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toRightMovesNim
β€”Subtype.prop

---

← Back to Index