π Source: Mathlib/SetTheory/Game/Nim.lean
grundyValue
leftMovesNimRecOn
nim
nimOneRelabelling
nimZeroRelabelling
rightMovesNimRecOn
toLeftMovesNim
toRightMovesNim
uniqueNimOneLeftMoves
uniqueNimOneRightMoves
default_nim_one_leftMoves_eq
default_nim_one_rightMoves_eq
equiv_nim_grundyValue
exists_grundyValue_moveLeft_of_lt
exists_grundyValue_moveRight_of_lt
grundyValue_add
grundyValue_eq_iff_equiv
grundyValue_eq_iff_equiv_nim
grundyValue_eq_sInf_moveLeft
grundyValue_eq_sInf_moveRight
grundyValue_iff_equiv_zero
grundyValue_le_of_forall_moveLeft
grundyValue_le_of_forall_moveRight
grundyValue_ne_moveLeft
grundyValue_ne_moveRight
grundyValue_neg
grundyValue_nim_add_nim
grundyValue_star
grundyValue_zero
impartial_nim
isEmpty_nim_zero_leftMoves
isEmpty_nim_zero_rightMoves
le_grundyValue_of_Iio_subset_moveLeft
le_grundyValue_of_Iio_subset_moveRight
leftMoves_nim
moveLeft_nim
moveLeft_nim_heq
moveLeft_toLeftMovesNim
moveRight_nim
moveRight_nim_heq
moveRight_toRightMovesNim
neg_nim
nim_add_equiv_zero_iff
nim_add_fuzzy_zero_iff
nim_add_nim_equiv
nim_birthday
nim_equiv_iff_eq
nim_fuzzy_zero_of_ne_zero
nim_grundyValue
nim_one_equiv
nim_one_moveLeft
nim_one_moveRight
nim_zero_equiv
rightMoves_nim
toLeftMovesNim_one_symm
toLeftMovesNim_symm_lt
toRightMovesNim_one_symm
toRightMovesNim_symm_lt
LeftMoves
Ordinal
Ordinal.one
Unique.instInhabited
DFunLike.coe
Equiv
Set.Elem
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
Set
Set.instMembership
Ordinal.zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
RightMoves
SetTheory.PGame
setoid
OrderIso
Nimber
Preorder.toLE
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
Nimber.toOrdinal
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Nimber.instConditionallyCompleteLinearOrderBot
moveLeft
LT.lt.not_ge
csInf_le'
moveRight
Impartial.moveRight_impartial
moveLeft_neg
instAdd
Nimber.instAdd
Nimber.toOrdinal_toNimber
Impartial.impartial_add
add_congr
equiv_congr_left
Equiv.trans
Equiv.symm
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Compl.compl
Set.instCompl
Set.range
grundyValue.eq_1
instZeroNimber
instZero
Impartial.impartial_zero
Mathlib.Tactic.Contrapose.contraposeβ
Mathlib.Tactic.Push.not_forall_eq
csInf_mem
Nimber.instWellFoundedLT
nonempty_of_not_bddAbove
Nimber.not_bddAbove_compl_of_small
small_range
UnivLE.small
UnivLE.self
Set.mem_range
Set.mem_compl_iff
Equiv.symm_apply_apply
instNeg
Impartial.impartial_neg
neg_equiv_iff
Ordinal.toNimber
star
instOneNimber
Impartial.impartial_star
Impartial
Ordinal.induction
impartial_def
equiv_rfl
isWellOrder_lt
wellFoundedLT_toType
Ordinal.typein_lt_self
IsEmpty
nim.eq_1
Ordinal.isEmpty_toType_zero
Set.instHasSubset
Ordinal.ToType
congr_heq
Ordinal.ToType.toOrd
not_imp_not
Impartial.not_equiv_zero_iff
Impartial.fuzzy_zero_iff_gf
zero_lf_le
add_moveLeft_inr
Impartial.add_self
fuzzy_congr_left
add_comm_equiv
Ne.lt_or_gt
Fuzzy
iff_not_comm
Impartial.not_fuzzy_zero_iff
birthday
birthday_def
max_eq_right
le_rfl
Ordinal.lsub_typein
Impartial.equiv_iff_add_equiv_zero
Impartial.fuzzy_zero_iff_lf
lf_zero_le
pos_iff_ne_zero
Ordinal.canonicallyOrderedAdd
Relabelling.equiv
Equiv.isEmpty
Unique.instSubsingleton
Subtype.prop
---
β Back to Index