Documentation Verification Report

Ordinal

πŸ“ Source: Mathlib/SetTheory/Game/Ordinal.lean

Statistics

MetricCount
DefinitionsoneToPGameRelabelling, toGame, toLeftMovesToPGame, toPGame, toPGameEmbedding, uniqueOneToPGameLeftMoves, zeroToPGameRelabelling
7
TheoremsisEmpty_toPGame_rightMoves, isEmpty_zero_toPGame_leftMoves, mk_toPGame, one_toPGame_leftMoves_default_eq, one_toPGame_moveLeft, toGame_inj, toGame_injective, toGame_le_iff, toGame_lf_iff, toGame_lt_iff, toGame_nadd, toGame_natCast, toGame_nmul, toGame_one, toGame_zero, toLeftMovesToPGame_symm_lt, toPGameEmbedding_apply, toPGame_equiv_iff, toPGame_inj, toPGame_injective, toPGame_le, toPGame_le_iff, toPGame_leftMoves, toPGame_lf, toPGame_lf_iff, toPGame_lt, toPGame_lt_iff, toPGame_moveLeft, toPGame_moveLeft', toPGame_moveLeft_hEq, toPGame_nadd, toPGame_natCast, toPGame_nmul, toPGame_nonneg, toPGame_one, toPGame_rightMoves, toPGame_zero, to_leftMoves_one_toPGame_symm
38
Total45

Ordinal

Definitions

NameCategoryTheorems
oneToPGameRelabelling πŸ“–CompOpβ€”
toGame πŸ“–CompOp
14 mathmath: toGame_lt_iff, toGame_one, SetTheory.Game.birthday_ordinalToGame, SetTheory.Game.le_birthday, mk_toPGame, toGame_zero, toGame_nmul, toGame_lf_iff, toGame_inj, SetTheory.Game.neg_birthday_le, toGame_injective, toGame_nadd, toGame_natCast, toGame_le_iff
toLeftMovesToPGame πŸ“–CompOp
5 mathmath: one_toPGame_leftMoves_default_eq, toPGame_moveLeft, to_leftMoves_one_toPGame_symm, toLeftMovesToPGame_symm_lt, toPGame_moveLeft'
toPGame πŸ“–CompOp
33 mathmath: toPGame_lf_iff, isEmpty_toPGame_rightMoves, SetTheory.PGame.le_birthday, one_toPGame_leftMoves_default_eq, toPGame_zero, toPGame_rightMoves, toPGame_nmul, isEmpty_zero_toPGame_leftMoves, toPGame_one, SetTheory.PGame.numeric_toPGame, toPGame_lf, toPGame_inj, one_toPGame_moveLeft, toPGame_nonneg, mk_toPGame, toPGame_le, toPGame_natCast, SetTheory.PGame.birthday_ordinalToPGame, toGame_nmul, toPGame_leftMoves, toPGame_lt_iff, toPGame_moveLeft, toPGame_moveLeft_hEq, toPGame_nadd, to_leftMoves_one_toPGame_symm, toPGame_injective, toPGame_le_iff, toLeftMovesToPGame_symm_lt, toPGame_lt, toPGameEmbedding_apply, toPGame_equiv_iff, SetTheory.PGame.neg_birthday_le, toPGame_moveLeft'
toPGameEmbedding πŸ“–CompOp
1 mathmath: toPGameEmbedding_apply
uniqueOneToPGameLeftMoves πŸ“–CompOp
1 mathmath: one_toPGame_leftMoves_default_eq
zeroToPGameRelabelling πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isEmpty_toPGame_rightMoves πŸ“–mathematicalβ€”IsEmpty
SetTheory.PGame.RightMoves
toPGame
β€”toPGame_rightMoves
PEmpty.instIsEmpty
isEmpty_zero_toPGame_leftMoves πŸ“–mathematicalβ€”IsEmpty
SetTheory.PGame.LeftMoves
toPGame
Ordinal
zero
β€”toPGame_leftMoves
isEmpty_toType_zero
mk_toPGame πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
β€”β€”
one_toPGame_leftMoves_default_eq πŸ“–mathematicalβ€”SetTheory.PGame.LeftMoves
toPGame
Ordinal
one
Unique.instInhabited
uniqueOneToPGameLeftMoves
DFunLike.coe
Equiv
Set.Elem
Set.Iio
PartialOrder.toPreorder
partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesToPGame
Set
Set.instMembership
zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
instZeroLEOneClass
instNeZeroOne
β€”β€”
one_toPGame_moveLeft πŸ“–mathematicalβ€”SetTheory.PGame.moveLeft
toPGame
Ordinal
one
zero
β€”toPGame_moveLeft'
Set.mem_Iio
zero_lt_one
instZeroLEOneClass
instNeZeroOne
to_leftMoves_one_toPGame_symm
toGame_inj πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
β€”β€”
toGame_injective πŸ“–mathematicalβ€”Ordinal
SetTheory.Game
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
β€”RelEmbedding.injective
toGame_le_iff πŸ“–mathematicalβ€”SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
SetTheory.Game.instPartialOrderGame
DFunLike.coe
OrderEmbedding
Ordinal
partialOrder
instFunLikeOrderEmbedding
toGame
β€”toPGame_le_iff
toGame_lf_iff πŸ“–mathematicalβ€”SetTheory.Game.LF
DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
Preorder.toLT
β€”toPGame_lf_iff
toGame_lt_iff πŸ“–mathematicalβ€”SetTheory.Game
Preorder.toLT
PartialOrder.toPreorder
SetTheory.Game.instPartialOrderGame
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
partialOrder
instFunLikeOrderEmbedding
toGame
β€”toPGame_lt_iff
toGame_nadd πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
nadd
SetTheory.Game.instAdd
β€”SetTheory.PGame.game_eq
toPGame_nadd
toGame_natCast πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
AddMonoidWithOne.toNatCast
addMonoidWithOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
β€”SetTheory.PGame.Relabelling.equiv
Nat.cast_add
nadd_nat
toGame_nadd
Nat.cast_one
toGame_nmul πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
nmul
SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instMul
toPGame
β€”SetTheory.PGame.game_eq
toPGame_nmul
toGame_one πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
β€”SetTheory.PGame.game_eq
toPGame_one
toGame_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Ordinal
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
toGame
zero
SetTheory.Game.instZero
β€”SetTheory.PGame.game_eq
toPGame_zero
toLeftMovesToPGame_symm_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set
Set.instMembership
Set.Iio
DFunLike.coe
Equiv
SetTheory.PGame.LeftMoves
toPGame
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesToPGame
β€”Subtype.prop
toPGameEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Ordinal
SetTheory.PGame
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.PGame.le
RelEmbedding.instFunLike
toPGameEmbedding
toPGame
β€”β€”
toPGame_equiv_iff πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
β€”le_antisymm_iff
toPGame_le_iff
toPGame_inj πŸ“–mathematicalβ€”toPGameβ€”toPGame_injective
toPGame_injective πŸ“–mathematicalβ€”Ordinal
SetTheory.PGame
toPGame
β€”toPGame_equiv_iff
SetTheory.PGame.equiv_of_eq
toPGame_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.PGame
SetTheory.PGame.le
toPGame
β€”SetTheory.PGame.le_iff_forall_lf
toPGame_moveLeft'
toPGame_lf
LT.lt.trans_le
toLeftMovesToPGame_symm_lt
isEmpty_toPGame_rightMoves
toPGame_le_iff πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.le
toPGame
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
not_le
SetTheory.PGame.not_le
toPGame_lf
toPGame_le
toPGame_leftMoves πŸ“–mathematicalβ€”SetTheory.PGame.LeftMoves
toPGame
ToType
β€”toPGame.eq_1
SetTheory.PGame.LeftMoves.eq_1
toPGame_lf πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
SetTheory.PGame.LF
toPGame
β€”toPGame_moveLeft
SetTheory.PGame.moveLeft_lf
toPGame_lf_iff πŸ“–mathematicalβ€”SetTheory.PGame.LF
toPGame
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
not_lt
SetTheory.PGame.not_lf
toPGame_le
toPGame_lf
toPGame_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
SetTheory.PGame
SetTheory.PGame.instPreorder
toPGame
β€”toPGame_le
LT.lt.le
toPGame_lf
toPGame_lt_iff πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
toPGame
Ordinal
PartialOrder.toPreorder
partialOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
not_lt
not_lt_of_ge
toPGame_le
toPGame_lt
toPGame_moveLeft πŸ“–mathematicalβ€”SetTheory.PGame.moveLeft
toPGame
DFunLike.coe
Equiv
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
SetTheory.PGame.LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesToPGame
Set
Set.instMembership
β€”toPGame_moveLeft'
Equiv.symm_apply_apply
toPGame_moveLeft' πŸ“–mathematicalβ€”SetTheory.PGame.moveLeft
toPGame
Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
partialOrder
DFunLike.coe
Equiv
SetTheory.PGame.LeftMoves
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesToPGame
β€”congr_heq
toPGame_moveLeft_hEq
toPGame_moveLeft_hEq πŸ“–mathematicalβ€”SetTheory.PGame.moveLeft
toPGame
Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
partialOrder
ToType.toOrd
β€”toPGame.eq_1
toPGame_nadd πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
nadd
SetTheory.PGame.instAdd
β€”β€”
toPGame_natCast πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
SetTheory.PGame.instNatCast
β€”SetTheory.PGame.equiv_iff_game_eq
mk_toPGame
toGame_natCast
SetTheory.PGame.quot_natCast
toPGame_nmul πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
nmul
SetTheory.PGame.instMul
β€”β€”
toPGame_nonneg πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.instZero
toPGame
β€”LE.le.trans
SetTheory.PGame.Relabelling.ge
toPGame_le
zero_le
canonicallyOrderedAdd
toPGame_one πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
Ordinal
one
SetTheory.PGame.instOnePGame
β€”SetTheory.PGame.Relabelling.equiv
toPGame_rightMoves πŸ“–mathematicalβ€”SetTheory.PGame.RightMoves
toPGame
β€”toPGame.eq_1
SetTheory.PGame.RightMoves.eq_1
toPGame_zero πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
toPGame
Ordinal
zero
SetTheory.PGame.instZero
β€”SetTheory.PGame.Relabelling.equiv
to_leftMoves_one_toPGame_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SetTheory.PGame.LeftMoves
toPGame
Ordinal
one
Set.Elem
Set.Iio
PartialOrder.toPreorder
partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesToPGame
Set
Set.instMembership
zero
Preorder.toLT
Set.mem_Iio
zero_lt_one
instZeroLEOneClass
instNeZeroOne
β€”Set.mem_Iio
zero_lt_one
instZeroLEOneClass
instNeZeroOne
Unique.instSubsingleton

---

← Back to Index