π Source: Mathlib/SetTheory/Game/Ordinal.lean
oneToPGameRelabelling
toGame
toLeftMovesToPGame
toPGame
toPGameEmbedding
uniqueOneToPGameLeftMoves
zeroToPGameRelabelling
isEmpty_toPGame_rightMoves
isEmpty_zero_toPGame_leftMoves
mk_toPGame
one_toPGame_leftMoves_default_eq
one_toPGame_moveLeft
toGame_inj
toGame_injective
toGame_le_iff
toGame_lf_iff
toGame_lt_iff
toGame_nadd
toGame_natCast
toGame_nmul
toGame_one
toGame_zero
toLeftMovesToPGame_symm_lt
toPGameEmbedding_apply
toPGame_equiv_iff
toPGame_inj
toPGame_injective
toPGame_le
toPGame_le_iff
toPGame_leftMoves
toPGame_lf
toPGame_lf_iff
toPGame_lt
toPGame_lt_iff
toPGame_moveLeft
toPGame_moveLeft'
toPGame_moveLeft_hEq
toPGame_nadd
toPGame_natCast
toPGame_nmul
toPGame_nonneg
toPGame_one
toPGame_rightMoves
toPGame_zero
to_leftMoves_one_toPGame_symm
SetTheory.Game.birthday_ordinalToGame
SetTheory.Game.le_birthday
SetTheory.Game.neg_birthday_le
SetTheory.PGame.le_birthday
SetTheory.PGame.numeric_toPGame
SetTheory.PGame.birthday_ordinalToPGame
SetTheory.PGame.neg_birthday_le
IsEmpty
SetTheory.PGame.RightMoves
PEmpty.instIsEmpty
SetTheory.PGame.LeftMoves
Ordinal
zero
isEmpty_toType_zero
SetTheory.PGame
SetTheory.PGame.setoid
DFunLike.coe
OrderEmbedding
SetTheory.Game
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
instFunLikeOrderEmbedding
one
Unique.instInhabited
Equiv
Set.Elem
Set.Iio
EquivLike.toFunLike
Equiv.instEquivLike
Set
Set.instMembership
Preorder.toLT
Set.mem_Iio
zero_lt_one
instZeroLEOneClass
instNeZeroOne
SetTheory.PGame.moveLeft
RelEmbedding.injective
SetTheory.Game.LF
nadd
SetTheory.Game.instAdd
SetTheory.PGame.game_eq
AddMonoidWithOne.toNatCast
addMonoidWithOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
SetTheory.PGame.Relabelling.equiv
Nat.cast_add
nadd_nat
Nat.cast_one
nmul
SetTheory.PGame.instMul
AddMonoidWithOne.toOne
SetTheory.Game.instZero
Equiv.symm
Subtype.prop
RelEmbedding
SetTheory.PGame.le
RelEmbedding.instFunLike
le_antisymm_iff
SetTheory.PGame.equiv_of_eq
SetTheory.PGame.le_iff_forall_lf
LT.lt.trans_le
Mathlib.Tactic.Contrapose.contraposeβ
not_le
SetTheory.PGame.not_le
ToType
toPGame.eq_1
SetTheory.PGame.LeftMoves.eq_1
SetTheory.PGame.LF
SetTheory.PGame.moveLeft_lf
not_lt
SetTheory.PGame.not_lf
SetTheory.PGame.instPreorder
LT.lt.le
not_lt_of_ge
Equiv.symm_apply_apply
congr_heq
ToType.toOrd
SetTheory.PGame.instAdd
SetTheory.PGame.instNatCast
SetTheory.PGame.equiv_iff_game_eq
SetTheory.PGame.quot_natCast
SetTheory.PGame.instZero
LE.le.trans
SetTheory.PGame.Relabelling.ge
zero_le
canonicallyOrderedAdd
SetTheory.PGame.instOnePGame
SetTheory.PGame.RightMoves.eq_1
Unique.instSubsingleton
---
β Back to Index