Documentation Verification Report

Lists

📁 Source: Mathlib/SetTheory/Lists.lean

Statistics

MetricCount
DefinitionsFinsets, instDecidableEq, instEmptyCollection, instInhabited, Lists, Lists', cons, instHasSubsetTrue, instInhabited, instMembershipLists, ofList, recOfList, toList, decidable, IsList, decidable, atom, inductionMut, instDecidableEq, instDecidableRelEquiv, instInhabited, instMembership, instSetoidLists, instSizeOf, mem, decidable, of', ofList, toList, instDecidableEqLists', decEq
31
Theoremsrefl, trans, cons_subset, mem_cons, mem_def, mem_equiv_left, mem_of_subset, mem_of_subset', ofList_subset, of_toList, subset_def, subset_nil, toList_cons, to_ofList, antisymm_iff, trans, equiv_atom, isList_of_mem, isList_toList, lt_sizeof_cons', of_toList, sizeof_pos, to_ofList
23
Total54

Finsets

Definitions

NameCategoryTheorems
instDecidableEq 📖CompOp
instEmptyCollection 📖CompOp
instInhabited 📖CompOp

Lists

Definitions

NameCategoryTheorems
IsList 📖MathDef
2 mathmath: isList_toList, isList_of_mem
atom 📖CompOp
1 mathmath: equiv_atom
inductionMut 📖CompOp
instDecidableEq 📖CompOp
instDecidableRelEquiv 📖CompOp
instInhabited 📖CompOp
instMembership 📖CompOp
instSetoidLists 📖CompOp
instSizeOf 📖CompOp
mem 📖MathDef
of' 📖CompOp
1 mathmath: Equiv.antisymm_iff
ofList 📖CompOp
3 mathmath: to_ofList, of_toList, isList_toList
toList 📖CompOp
2 mathmath: to_ofList, of_toList

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_atom 📖mathematicalEquiv
atom
isList_of_mem 📖mathematicalLists
instMembership
IsList
isList_toList 📖mathematicalIsList
ofList
lt_sizeof_cons' 📖mathematicalLists'
Lists'.cons'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
sizeof_pos
of_toList 📖mathematicalIsListofList
toList
Lists'.of_toList
sizeof_pos 📖mathematicalLists'Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass
to_ofList 📖mathematicaltoList
ofList
Lists'.to_ofList

Lists'

Definitions

NameCategoryTheorems
cons 📖CompOp
3 mathmath: toList_cons, cons_subset, mem_cons
instHasSubsetTrue 📖CompOp
5 mathmath: subset_def, Subset.refl, cons_subset, ofList_subset, Lists.Equiv.antisymm_iff
instInhabited 📖CompOp
instMembershipLists 📖CompOp
6 mathmath: mem_equiv_left, mem_def, subset_def, cons_subset, mem_of_subset', mem_cons
ofList 📖CompOp
3 mathmath: to_ofList, ofList_subset, of_toList
recOfList 📖CompOp
toList 📖CompOp
4 mathmath: toList_cons, mem_def, to_ofList, of_toList

Theorems

NameKindAssumesProvesValidatesDepends On
cons_subset 📖mathematicalLists'
instHasSubsetTrue
cons
Lists
instMembershipLists
mem_cons 📖mathematicalLists
Lists'
instMembershipLists
cons
Lists.Equiv
mem_def 📖mathematicalLists
Lists'
instMembershipLists
toList
Lists.Equiv
mem_equiv_left 📖mathematicalLists.EquivLists
Lists'
instMembershipLists
Lists.Equiv.trans
Lists.Equiv.symm
mem_of_subset 📖Lists'
instHasSubsetTrue
Lists
instMembershipLists
mem_equiv_left
mem_of_subset'
mem_of_subset' 📖mathematicalLists'
instHasSubsetTrue
Lists
toList
instMembershipLists
ofList_subset 📖mathematicalListsLists'
instHasSubsetTrue
ofList
to_ofList
of_toList 📖mathematicalofList
toList
subset_def 📖mathematicalLists'
instHasSubsetTrue
Lists
instMembershipLists
mem_of_subset'
cons_subset
to_ofList
subset_nil 📖Lists'
instHasSubsetTrue
nil
of_toList
cons_subset
toList_cons 📖mathematicaltoList
cons
Lists
to_ofList 📖mathematicaltoList
ofList

Lists'.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
refl 📖mathematicalLists'
Lists'.instHasSubsetTrue
Lists'.of_toList
Lists'.ofList_subset
trans 📖Lists'
Lists'.instHasSubsetTrue
Lists'.subset_def
Lists'.mem_of_subset
Lists'.mem_of_subset'

Lists.Equiv

Definitions

NameCategoryTheorems
decidable 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm_iff 📖mathematicalLists.Equiv
Lists.of'
Lists'
Lists'.instHasSubsetTrue
trans 📖Lists.EquivLists.equiv_atom
antisymm_iff
Lists'.subset_def
Lists'.mem_of_subset'
symm

Lists.Subset

Definitions

NameCategoryTheorems
decidable 📖CompOp

Lists.mem

Definitions

NameCategoryTheorems
decidable 📖CompOp

(root)

Definitions

NameCategoryTheorems
Finsets 📖CompOp
Lists 📖CompOp
6 mathmath: Lists'.toList_cons, Lists'.mem_equiv_left, Lists'.mem_def, Lists'.subset_def, Lists'.cons_subset, Lists'.mem_cons
Lists' 📖CompData
10 mathmath: Lists'.mem_equiv_left, Lists.lt_sizeof_cons', Lists'.mem_def, Lists'.subset_def, Lists'.Subset.refl, Lists'.cons_subset, Lists'.ofList_subset, Lists'.mem_cons, Lists.sizeof_pos, Lists.Equiv.antisymm_iff
instDecidableEqLists' 📖CompOp

instDecidableEqLists'

Definitions

NameCategoryTheorems
decEq 📖CompOp

---

← Back to Index