Documentation Verification Report

Basic

πŸ“ Source: Mathlib/SetTheory/Nimber/Basic.lean

Statistics

MetricCount
DefinitionsNimber, add, instAdd, instAddCommGroupWithOne, instConditionallyCompleteLinearOrderBot, instLinearOrder, instNeg, instOrderBot, instSuccOrder, rec, toOrdinal, Β«termβˆ—_Β», toNimber, instInhabitedNimber, instNontrivialNimber, instOneNimber, instWellFoundedRelationNimber, instZeroNimber
18
Theoremsadd_assoc, add_cancel_left, add_cancel_right, add_comm, add_def, add_eq_zero, add_le_of_forall_ne, add_nat, add_ne_zero_iff, add_self, add_trichotomy, add_zero, bot_eq_zero, eq_nat_of_le_nat, exists_of_lt_add, induction, instIsLeftCancelAdd, instIsRightCancelAdd, instNeZeroOne, instNoMaxOrder, instWellFoundedLT, instZeroLEOneClass, le_zero, lt_add_cases, lt_one_iff_zero, lt_wf, neg_eq, not_bddAbove_compl_of_small, not_lt_zero, one_le_iff_ne_zero, pos_iff_ne_zero, small_Icc, small_Ico, small_Iic, small_Iio, small_Ioc, small_Ioo, succ_def, toOrdinal_eq_one, toOrdinal_eq_zero, toOrdinal_max, toOrdinal_min, toOrdinal_one, toOrdinal_symm_eq, toOrdinal_toNimber, toOrdinal_zero, uncountable, zero_add, toNimber_eq_one, toNimber_eq_zero, toNimber_max, toNimber_min, toNimber_one, toNimber_symm_eq, toNimber_toOrdinal, toNimber_zero, not_small_nimber
57
Total75

Nimber

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
22 mathmath: SetTheory.PGame.grundyValue_nim_add_nim, add_le_of_forall_ne, add_self, add_trichotomy, add_def, add_cancel_left, mul_add, add_cancel_right, add_nat, instIsRightCancelAdd, cons_mem_invSet, instIsLeftCancelAdd, add_eq_zero, mul_def, zero_add, add_comm, add_assoc, add_mul, add_zero, exists_of_lt_mul, SetTheory.PGame.nim_add_nim_equiv, SetTheory.PGame.grundyValue_add
instAddCommGroupWithOne πŸ“–CompOp
1 mathmath: instCharPOfNatNat
instConditionallyCompleteLinearOrderBot πŸ“–CompOp
26 mathmath: SetTheory.PGame.grundyValue_eq_sInf_moveLeft, succ_def, mul_le_of_forall_ne, Ordinal.toNimber_min, add_le_of_forall_ne, toOrdinal_max, toOrdinal_min, pos_iff_ne_zero, add_trichotomy, add_def, SetTheory.PGame.grundyValue_eq_sInf_moveRight, SetTheory.PGame.grundyValue_le_of_forall_moveLeft, small_Ioo, not_bddAbove_compl_of_small, not_lt_zero, small_Ioc, small_Icc, small_Iic, one_le_iff_ne_zero, mul_def, small_Ico, Ordinal.toNimber_max, SetTheory.PGame.grundyValue_le_of_forall_moveRight, le_zero, small_Iio, lt_one_iff_zero
instLinearOrder πŸ“–CompOp
27 mathmath: Ordinal.toNimber_eq_zero, SetTheory.PGame.grundyValue_eq_iff_equiv_nim, Ordinal.toNimber_symm_eq, SetTheory.PGame.grundyValue_nim_add_nim, succ_def, Ordinal.toNimber_min, toOrdinal_max, toOrdinal_min, add_nat, instWellFoundedLT, SetTheory.PGame.equiv_nim_grundyValue, Ordinal.toNimber_one, toOrdinal_eq_one, toOrdinal_one, instZeroLEOneClass, instNoMaxOrder, lt_wf, Ordinal.toNimber_zero, Ordinal.toNimber_toOrdinal, Ordinal.toNimber_max, Ordinal.toNimber_eq_one, toOrdinal_symm_eq, SetTheory.PGame.nim_grundyValue, toOrdinal_zero, toOrdinal_toNimber, SetTheory.PGame.nim_add_nim_equiv, toOrdinal_eq_zero
instNeg πŸ“–CompOp
1 mathmath: neg_eq
instOrderBot πŸ“–CompOpβ€”
instSuccOrder πŸ“–CompOp
1 mathmath: succ_def
rec πŸ“–CompOpβ€”
toOrdinal πŸ“–CompOp
14 mathmath: SetTheory.PGame.grundyValue_eq_iff_equiv_nim, Ordinal.toNimber_symm_eq, succ_def, toOrdinal_max, toOrdinal_min, SetTheory.PGame.equiv_nim_grundyValue, toOrdinal_eq_one, toOrdinal_one, Ordinal.toNimber_toOrdinal, toOrdinal_symm_eq, toOrdinal_zero, toOrdinal_toNimber, SetTheory.PGame.nim_add_nim_equiv, toOrdinal_eq_zero
Β«termβˆ—_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_assoc πŸ“–mathematicalβ€”Nimber
instAdd
β€”β€”
add_cancel_left πŸ“–mathematicalβ€”Nimber
instAdd
β€”add_assoc
add_self
zero_add
add_cancel_right πŸ“–mathematicalβ€”Nimber
instAdd
β€”add_assoc
add_self
add_zero
add_comm πŸ“–mathematicalβ€”Nimber
instAdd
β€”β€”
add_def πŸ“–mathematicalβ€”Nimber
instAdd
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Compl.compl
Set
Set.instCompl
setOf
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”add.eq_1
add_eq_zero πŸ“–mathematicalβ€”Nimber
instAdd
instZeroNimber
β€”β€”
add_le_of_forall_ne πŸ“–mathematicalβ€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
β€”exists_of_lt_add
add_nat πŸ“–mathematicalβ€”Nimber
instAdd
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
instFunLikeOrderIso
Ordinal.toNimber
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
β€”β€”
add_ne_zero_iff πŸ“–β€”β€”β€”β€”Iff.not
add_eq_zero
add_self πŸ“–mathematicalβ€”Nimber
instAdd
instZeroNimber
β€”add_eq_zero
add_trichotomy πŸ“–mathematicalβ€”Nimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
β€”exists_of_lt_add
pos_iff_ne_zero
add_eq_zero
add_comm
add_cancel_right
add_zero πŸ“–mathematicalβ€”Nimber
instAdd
instZeroNimber
β€”le_antisymm
add_le_of_forall_ne
LT.lt.ne
not_lt_zero
Eq.not_lt
instIsRightCancelAdd
bot_eq_zero πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Nat.instOrderBot
β€”β€”
eq_nat_of_le_nat πŸ“–β€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
DFunLike.coe
OrderIso
Ordinal
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
instFunLikeOrderIso
Ordinal.toNimber
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
β€”β€”Ordinal.lt_omega0
LE.le.trans_lt
Ordinal.nat_lt_omega0
exists_of_lt_add πŸ“–β€”Nimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
β€”β€”notMem_of_lt_csInf'
add_def
Set.mem_compl_iff
induction πŸ“–β€”β€”β€”β€”Ordinal.induction
instIsLeftCancelAdd πŸ“–mathematicalβ€”IsLeftCancelAdd
Nimber
instAdd
β€”le_antisymm
le_of_not_gt
instIsRightCancelAdd πŸ“–mathematicalβ€”IsRightCancelAdd
Nimber
instAdd
β€”le_antisymm
le_of_not_gt
instNeZeroOne πŸ“–mathematicalβ€”Nimber
instZeroNimber
instOneNimber
β€”Ordinal.instNeZeroOne
instNoMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
Nimber
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Ordinal.instNoMaxOrder
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
Nimber
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Ordinal.wellFoundedLT
instZeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
Nimber
instZeroNimber
instOneNimber
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Ordinal.instZeroLEOneClass
le_zero πŸ“–mathematicalβ€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNimber
β€”nonpos_iff_eq_zero
Ordinal.canonicallyOrderedAdd
lt_add_cases πŸ“–β€”Nimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
β€”β€”add_trichotomy
add_ne_zero_iff
LT.lt.ne
add_assoc
LT.lt.asymm
add_comm
lt_one_iff_zero πŸ“–mathematicalβ€”Nimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instOneNimber
instZeroNimber
β€”Ordinal.lt_one_iff_zero
lt_wf πŸ“–mathematicalβ€”Nimber
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Ordinal.lt_wf
neg_eq πŸ“–mathematicalβ€”Nimber
instNeg
β€”β€”
not_bddAbove_compl_of_small πŸ“–mathematicalβ€”BddAbove
Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Compl.compl
Set
Set.instCompl
β€”Ordinal.not_bddAbove_compl_of_small
not_lt_zero πŸ“–mathematicalβ€”Nimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNimber
β€”not_lt_zero
Ordinal.canonicallyOrderedAdd
one_le_iff_ne_zero πŸ“–mathematicalβ€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instOneNimber
β€”Ordinal.one_le_iff_ne_zero
pos_iff_ne_zero πŸ“–mathematicalβ€”Nimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNimber
β€”pos_iff_ne_zero
Ordinal.canonicallyOrderedAdd
small_Icc πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Icc
small_Ico πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
Set.Ico
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Ico
small_Iic πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Iic
small_Iio πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Iio
small_Ioc πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
Set.Ioc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Ioc
small_Ioo πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
Set.Ioo
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Ioo
succ_def πŸ“–mathematicalβ€”Order.succ
Nimber
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instSuccOrder
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
instFunLikeOrderIso
Ordinal.toNimber
Ordinal.add
toOrdinal
Ordinal.one
β€”β€”
toOrdinal_eq_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
Ordinal.one
instOneNimber
β€”β€”
toOrdinal_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
Ordinal.zero
instZeroNimber
β€”β€”
toOrdinal_max πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Ordinal.instConditionallyCompleteLinearOrderBot
β€”β€”
toOrdinal_min πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
SemilatticeInf.toMin
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Ordinal.instConditionallyCompleteLinearOrderBot
β€”β€”
toOrdinal_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
instOneNimber
Ordinal.one
β€”β€”
toOrdinal_symm_eq πŸ“–mathematicalβ€”OrderIso.symm
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
toOrdinal
Ordinal.toNimber
β€”β€”
toOrdinal_toNimber πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
instFunLikeOrderIso
Ordinal.toNimber
toOrdinal
β€”β€”
toOrdinal_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
instZeroNimber
Ordinal.zero
β€”β€”
uncountable πŸ“–mathematicalβ€”Uncountable
Nimber
β€”Ordinal.uncountable
zero_add πŸ“–mathematicalβ€”Nimber
instAdd
instZeroNimber
β€”add_comm
add_zero

Ordinal

Definitions

NameCategoryTheorems
toNimber πŸ“–CompOp
15 mathmath: toNimber_eq_zero, toNimber_symm_eq, SetTheory.PGame.grundyValue_nim_add_nim, Nimber.succ_def, toNimber_min, Nimber.add_nat, toNimber_one, toNimber_zero, toNimber_toOrdinal, toNimber_max, toNimber_eq_one, Nimber.toOrdinal_symm_eq, SetTheory.PGame.nim_grundyValue, Nimber.toOrdinal_toNimber, SetTheory.PGame.nim_add_nim_equiv

Theorems

NameKindAssumesProvesValidatesDepends On
toNimber_eq_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
toNimber
instOneNimber
one
β€”β€”
toNimber_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
toNimber
instZeroNimber
zero
β€”β€”
toNimber_max πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
toNimber
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Nimber.instConditionallyCompleteLinearOrderBot
β€”β€”
toNimber_min πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
toNimber
SemilatticeInf.toMin
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Nimber.instConditionallyCompleteLinearOrderBot
β€”β€”
toNimber_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
toNimber
one
instOneNimber
β€”β€”
toNimber_symm_eq πŸ“–mathematicalβ€”OrderIso.symm
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
toNimber
Nimber.toOrdinal
β€”β€”
toNimber_toOrdinal πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Nimber
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
partialOrder
instFunLikeOrderIso
Nimber.toOrdinal
toNimber
β€”β€”
toNimber_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
Nimber
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nimber.instLinearOrder
instFunLikeOrderIso
toNimber
zero
instZeroNimber
β€”β€”

(root)

Definitions

NameCategoryTheorems
Nimber πŸ“–CompOp
81 mathmath: Ordinal.toNimber_eq_zero, SetTheory.PGame.grundyValue_eq_sInf_moveLeft, Nimber.instSmallElemInvSet, not_small_nimber, SetTheory.PGame.grundyValue_eq_iff_equiv_nim, Ordinal.toNimber_symm_eq, SetTheory.PGame.grundyValue_nim_add_nim, Nimber.succ_def, Nimber.instNoZeroDivisors, Nimber.mul_le_of_forall_ne, Ordinal.toNimber_min, Nimber.add_le_of_forall_ne, Nimber.mul_assoc, Nimber.zero_mem_invSet, Nimber.add_self, Nimber.toOrdinal_max, Nimber.toOrdinal_min, Nimber.pos_iff_ne_zero, Nimber.add_trichotomy, Nimber.add_def, Nimber.add_cancel_left, SetTheory.PGame.grundyValue_zero, SetTheory.PGame.grundyValue_eq_sInf_moveRight, SetTheory.PGame.grundyValue_le_of_forall_moveLeft, Nimber.uncountable, Nimber.invAux_notMem_invSet, Nimber.instCharPOfNatNat, Nimber.mul_add, Nimber.add_cancel_right, Nimber.add_nat, Nimber.small_Ioo, Nimber.instIsDomain, SetTheory.PGame.grundyValue_star, Nimber.instWellFoundedLT, SetTheory.PGame.equiv_nim_grundyValue, Ordinal.toNimber_one, Nimber.instIsRightCancelAdd, Nimber.toOrdinal_eq_one, Nimber.mul_invAux_cancel, Nimber.one_mul, Nimber.instIsLeftCancelAdd, Nimber.not_bddAbove_compl_of_small, Nimber.toOrdinal_one, Nimber.instNeZeroOne, Nimber.not_lt_zero, Nimber.small_Ioc, Nimber.inv_eq_invAux, Nimber.instZeroLEOneClass, Nimber.small_Icc, Nimber.instNoMaxOrder, Nimber.add_eq_zero, Nimber.neg_eq, Nimber.small_Iic, Nimber.one_le_iff_ne_zero, Nimber.lt_wf, Nimber.mul_def, Nimber.small_Ico, Nimber.zero_add, Nimber.add_comm, Ordinal.toNimber_zero, Nimber.add_assoc, Nimber.add_mul, Ordinal.toNimber_toOrdinal, Ordinal.toNimber_max, Ordinal.toNimber_eq_one, Nimber.toOrdinal_symm_eq, SetTheory.PGame.nim_grundyValue, Nimber.mul_comm, SetTheory.PGame.grundyValue_le_of_forall_moveRight, Nimber.toOrdinal_zero, SetTheory.PGame.grundyValue_iff_equiv_zero, Nimber.instIsCancelMulZero, Nimber.le_zero, Nimber.toOrdinal_toNimber, Nimber.small_Iio, Nimber.add_zero, Nimber.mul_one, Nimber.lt_one_iff_zero, SetTheory.PGame.nim_add_nim_equiv, Nimber.toOrdinal_eq_zero, SetTheory.PGame.grundyValue_add
instInhabitedNimber πŸ“–CompOpβ€”
instNontrivialNimber πŸ“–CompOpβ€”
instOneNimber πŸ“–CompOp
13 mathmath: SetTheory.PGame.grundyValue_star, Ordinal.toNimber_one, Nimber.toOrdinal_eq_one, Nimber.cons_mem_invSet, Nimber.mul_invAux_cancel, Nimber.one_mul, Nimber.toOrdinal_one, Nimber.instNeZeroOne, Nimber.instZeroLEOneClass, Nimber.one_le_iff_ne_zero, Ordinal.toNimber_eq_one, Nimber.mul_one, Nimber.lt_one_iff_zero
instWellFoundedRelationNimber πŸ“–CompOpβ€”
instZeroNimber πŸ“–CompOp
19 mathmath: Ordinal.toNimber_eq_zero, Nimber.instNoZeroDivisors, Nimber.zero_mem_invSet, Nimber.add_self, Nimber.pos_iff_ne_zero, SetTheory.PGame.grundyValue_zero, Nimber.instNeZeroOne, Nimber.not_lt_zero, Nimber.instZeroLEOneClass, Nimber.add_eq_zero, Nimber.zero_add, Ordinal.toNimber_zero, Nimber.toOrdinal_zero, SetTheory.PGame.grundyValue_iff_equiv_zero, Nimber.instIsCancelMulZero, Nimber.le_zero, Nimber.add_zero, Nimber.lt_one_iff_zero, Nimber.toOrdinal_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
not_small_nimber πŸ“–mathematicalβ€”Small
Nimber
β€”not_small_ordinal

---

← Back to Index