| Name | Category | Theorems |
add π | CompOp | β |
instAdd π | CompOp | 22 mathmath: SetTheory.PGame.grundyValue_nim_add_nim, add_le_of_forall_ne, add_self, add_trichotomy, add_def, add_cancel_left, mul_add, add_cancel_right, add_nat, instIsRightCancelAdd, cons_mem_invSet, instIsLeftCancelAdd, add_eq_zero, mul_def, zero_add, add_comm, add_assoc, add_mul, add_zero, exists_of_lt_mul, SetTheory.PGame.nim_add_nim_equiv, SetTheory.PGame.grundyValue_add
|
instAddCommGroupWithOne π | CompOp | 1 mathmath: instCharPOfNatNat
|
instConditionallyCompleteLinearOrderBot π | CompOp | 26 mathmath: SetTheory.PGame.grundyValue_eq_sInf_moveLeft, succ_def, mul_le_of_forall_ne, Ordinal.toNimber_min, add_le_of_forall_ne, toOrdinal_max, toOrdinal_min, pos_iff_ne_zero, add_trichotomy, add_def, SetTheory.PGame.grundyValue_eq_sInf_moveRight, SetTheory.PGame.grundyValue_le_of_forall_moveLeft, small_Ioo, not_bddAbove_compl_of_small, not_lt_zero, small_Ioc, small_Icc, small_Iic, one_le_iff_ne_zero, mul_def, small_Ico, Ordinal.toNimber_max, SetTheory.PGame.grundyValue_le_of_forall_moveRight, le_zero, small_Iio, lt_one_iff_zero
|
instLinearOrder π | CompOp | 27 mathmath: Ordinal.toNimber_eq_zero, SetTheory.PGame.grundyValue_eq_iff_equiv_nim, Ordinal.toNimber_symm_eq, SetTheory.PGame.grundyValue_nim_add_nim, succ_def, Ordinal.toNimber_min, toOrdinal_max, toOrdinal_min, add_nat, instWellFoundedLT, SetTheory.PGame.equiv_nim_grundyValue, Ordinal.toNimber_one, toOrdinal_eq_one, toOrdinal_one, instZeroLEOneClass, instNoMaxOrder, lt_wf, Ordinal.toNimber_zero, Ordinal.toNimber_toOrdinal, Ordinal.toNimber_max, Ordinal.toNimber_eq_one, toOrdinal_symm_eq, SetTheory.PGame.nim_grundyValue, toOrdinal_zero, toOrdinal_toNimber, SetTheory.PGame.nim_add_nim_equiv, toOrdinal_eq_zero
|
instNeg π | CompOp | 1 mathmath: neg_eq
|
instOrderBot π | CompOp | β |
instSuccOrder π | CompOp | 1 mathmath: succ_def
|
rec π | CompOp | β |
toOrdinal π | CompOp | 14 mathmath: SetTheory.PGame.grundyValue_eq_iff_equiv_nim, Ordinal.toNimber_symm_eq, succ_def, toOrdinal_max, toOrdinal_min, SetTheory.PGame.equiv_nim_grundyValue, toOrdinal_eq_one, toOrdinal_one, Ordinal.toNimber_toOrdinal, toOrdinal_symm_eq, toOrdinal_zero, toOrdinal_toNimber, SetTheory.PGame.nim_add_nim_equiv, toOrdinal_eq_zero
|
Β«termβ_Β» π | CompOp | β |