Documentation Verification Report

Field

πŸ“ Source: Mathlib/SetTheory/Nimber/Field.lean

Statistics

MetricCount
DefinitionsinstCommRing, instField, instInv, instMul, instMulZeroClass, invAux, invSet, mul
8
Theoremsadd_mul, cons_mem_invSet, exists_of_lt_mul, instCharPOfNatNat, instIsCancelMulZero, instIsDomain, instNoZeroDivisors, instSmallElemInvSet, invAux_mem_invSet_of_lt, invAux_ne_zero, invAux_notMem_invSet, invSet_recOn, inv_eq_invAux, mem_invSet_of_lt_invAux, mul_add, mul_assoc, mul_comm, mul_def, mul_invAux_cancel, mul_le_of_forall_ne, mul_one, one_mul, zero_mem_invSet
23
Total31

Nimber

Definitions

NameCategoryTheorems
instCommRing πŸ“–CompOp
1 mathmath: instIsDomain
instField πŸ“–CompOpβ€”
instInv πŸ“–CompOp
1 mathmath: inv_eq_invAux
instMul πŸ“–CompOp
12 mathmath: instNoZeroDivisors, mul_le_of_forall_ne, mul_assoc, mul_add, cons_mem_invSet, mul_invAux_cancel, one_mul, mul_def, add_mul, mul_comm, instIsCancelMulZero, mul_one
instMulZeroClass πŸ“–CompOpβ€”
invAux πŸ“–CompOp
5 mathmath: invAux_notMem_invSet, cons_mem_invSet, mul_invAux_cancel, inv_eq_invAux, invAux_mem_invSet_of_lt
invSet πŸ“–CompOp
5 mathmath: instSmallElemInvSet, zero_mem_invSet, invAux_notMem_invSet, invAux_mem_invSet_of_lt, mem_invSet_of_lt_invAux
mul πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_mul πŸ“–mathematicalβ€”Nimber
instMul
instAdd
β€”mul_comm
mul_add
cons_mem_invSet πŸ“–mathematicalNimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
invSet
instMul
invAux
instAdd
instOneNimber
β€”invSet.eq_1
Set.mem_sInter
exists_of_lt_mul πŸ“–mathematicalNimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instMul
instAddβ€”notMem_of_lt_csInf'
mul_def
Set.notMem_compl_iff
instCharPOfNatNat πŸ“–mathematicalβ€”CharP
Nimber
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOne
β€”CharTwo.of_one_ne_zero_of_two_eq_zero
one_ne_zero
instNeZeroOne
Nat.instAtLeastTwoHAddOfNat
one_add_one_eq_two
add_self
instIsCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZero
Nimber
instMul
instZeroNimber
β€”add_eq_zero
mul_eq_zero
instNoZeroDivisors
mul_add
add_mul
instIsDomain πŸ“–mathematicalβ€”IsDomain
Nimber
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”instIsCancelMulZero
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
Nimber
instMul
instZeroNimber
β€”pos_iff_ne_zero
MulZeroClass.zero_mul
MulZeroClass.mul_zero
zero_add
instSmallElemInvSet πŸ“–mathematicalβ€”Small
Set.Elem
Nimber
invSet
β€”small_subset
OrderIso.symm_apply_apply
small_range
UnivLE.small
univLE_of_max
UnivLE.self
invAux_mem_invSet_of_lt πŸ“–mathematicalNimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
invSet
invAux
β€”cons_mem_invSet
zero_mem_invSet
mul_one
add_zero
MulZeroClass.mul_zero
invAux_ne_zero πŸ“–β€”β€”β€”β€”invAux.eq_1
csInf_mem
instWellFoundedLT
zero_mem_invSet
invAux_notMem_invSet πŸ“–mathematicalβ€”Nimber
Set
Set.instMembership
invSet
invAux
β€”invAux.eq_1
csInf_mem
instWellFoundedLT
invSet_recOn πŸ“–β€”Nimber
instZeroNimber
instMul
invAux
instAdd
instOneNimber
Set
Set.instMembership
invSet
β€”β€”invSet.eq_1
Set.sInter_subset_of_mem
inv_eq_invAux πŸ“–mathematicalβ€”Nimber
instInv
invAux
β€”β€”
mem_invSet_of_lt_invAux πŸ“–mathematicalNimber
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
invAux
Set
Set.instMembership
invSet
β€”notMem_of_lt_csInf
invAux.eq_1
bot_mem_lowerBounds
Set.notMem_compl_iff
mul_add πŸ“–mathematicalβ€”Nimber
instMul
instAdd
β€”β€”
mul_assoc πŸ“–mathematicalβ€”Nimber
instMul
β€”β€”
mul_comm πŸ“–mathematicalβ€”Nimber
instMul
β€”β€”
mul_def πŸ“–mathematicalβ€”Nimber
instMul
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Compl.compl
Set
Set.instCompl
setOf
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
instAdd
β€”mul.eq_1
mul_invAux_cancel πŸ“–mathematicalβ€”Nimber
instMul
invAux
instOneNimber
β€”β€”
mul_le_of_forall_ne πŸ“–mathematicalβ€”Nimber
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instMul
β€”exists_of_lt_mul
mul_one πŸ“–mathematicalβ€”Nimber
instMul
instOneNimber
β€”mul_comm
one_mul
one_mul πŸ“–mathematicalβ€”Nimber
instMul
instOneNimber
β€”le_antisymm
mul_le_of_forall_ne
lt_one_iff_zero
MulZeroClass.zero_mul
add_zero
zero_add
LT.lt.ne
Eq.not_lt
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
one_ne_zero
instNeZeroOne
zero_mem_invSet πŸ“–mathematicalβ€”Nimber
Set
Set.instMembership
invSet
instZeroNimber
β€”invSet.eq_1
Set.mem_sInter

---

← Back to Index