Documentation Verification Report

Arithmetic

πŸ“ Source: Mathlib/SetTheory/Ordinal/Arithmetic.lean

Statistics

MetricCount
DefinitionsboundedLimitRecOn, div, limitRecOn, monoid, monoidWithZero, orderTopToTypeSucc, pred, pred_succ_gi, sub
9
Theoremsadd_one_of_aleph0_le, isSuccLimit_ord, noMaxOrder, ordinalPred_eq, ordinalPred_eq, id_le, inj, isSuccLimit, le_apply, le_iff, le_iff_eq, le_set, le_set', limit_le, limit_lt, lt_iff, monotone, refl, strictMono, trans, add_eq_zero_iff, add_le_add_iff_right, add_le_iff, add_le_iff_of_isSuccLimit, add_mul_of_isSuccLimit, add_mul_succ, add_omega0, add_right_cancel, add_sub_add_cancel, add_sub_cancel, add_sub_cancel_of_le, antisymm, boundedLimitRec_limit, boundedLimitRec_succ, boundedLimitRec_zero, bounded_singleton, card_mul, div_add_mod, div_eq_zero_of_lt, div_le, div_le_left, div_le_of_le_mul, div_lt, div_mul_cancel, div_one, div_pos, div_self, div_zero, dvd_add_iff, dvd_antisymm, dvd_iff_mod_eq_zero, dvd_of_mod_eq_zero, enum_succ_eq_top, eq_nat_or_omega0_le, has_succ_of_type_succ_lt, instAddLeftReflectLE, instAddLeftReflectLT, instAddLeftStrictMono, instAddRightReflectLT, instCharZero, instIsLeftCancelAdd, instPosMulStrictMono, isNormal_add_right, isNormal_iff_strictMono_limit, isNormal_mul_right, isSuccLimit_add, isSuccLimit_add_iff, isSuccLimit_add_iff_of_isSuccLimit, isSuccLimit_iff, isSuccLimit_iff_omega0_dvd, isSuccLimit_lift, isSuccLimit_mul, isSuccLimit_mul_left, isSuccLimit_omega0, isSuccLimit_sub, isSuccPrelimit_lift, isSuccPrelimit_zero, le_add_sub, le_div, le_mul_left, le_mul_right, le_of_dvd, le_of_mul_le_mul_left, le_sub_of_add_le, le_sub_of_le, leftDistribClass, left_eq_zero_of_add_eq_zero, lift_add, lift_mul, lift_natCast, lift_ofNat, lift_pred, lift_succ, limitRecOn_limit, limitRecOn_succ, limitRecOn_zero, lt_add_iff, lt_add_iff_of_isSuccLimit, lt_div, lt_mul_div_add, lt_mul_iff_of_isSuccLimit, lt_mul_succ_div, lt_omega0, lt_pred_iff_succ_lt, lt_sub, mk_Iio_ordinal, mod_def, mod_eq_of_lt, mod_eq_zero_of_dvd, mod_le, mod_lt, mod_mod, mod_mod_of_dvd, mod_one, mod_self, mod_zero, mulLeftMono, mulRightMono, mul_add_div, mul_add_div_mul, mul_add_mod_mul, mul_add_mod_self, mul_div_cancel, mul_div_le, mul_div_mul_cancel, mul_le_iff_of_isSuccLimit, mul_le_mul_iff_left, mul_lt_mul_iff_left, mul_lt_mul_of_pos_left, mul_lt_of_lt_div, mul_mod, mul_mod_mul, mul_ne_zero, mul_pos, mul_right_inj, mul_sub, mul_succ, natCast_add_of_omega0_le, natCast_add_omega0, natCast_div, natCast_lt_of_isSuccLimit, natCast_mod, natCast_mod_omega0, natCast_mul, natCast_sub, nat_lt_omega0, noZeroDivisors, not_isSuccLimit_zero, omega0_le, omega0_le_of_isSuccLimit, omega0_ne_zero, omega0_pos, one_add_natCast, one_add_ofNat, one_add_of_omega0_le, one_add_omega0, one_lt_of_isSuccLimit, one_lt_omega0, pred_eq_iff_isSuccPrelimit, pred_eq_of_isSuccPrelimit, pred_le_iff_le_succ, pred_le_self, pred_lt_iff_not_isSuccPrelimit, pred_succ, pred_surjective, pred_zero, right_eq_zero_of_add_eq_zero, self_le_succ_pred, smul_eq_mul, sub_eq_of_add_eq, sub_eq_zero_iff_le, sub_le, sub_le_self, sub_lt_of_le, sub_lt_of_lt_add, sub_ne_zero_iff_lt, sub_self, sub_sub, sub_zero, succ_pred_eq_iff_not_isSuccPrelimit, toType_noMax_of_succ_lt, type_prod_lex, typein_ordinal, zero_div, zero_mod, zero_or_succ_or_isSuccLimit, zero_sub
187
Total196

Cardinal

Theorems

NameKindAssumesProvesValidatesDepends On
add_one_of_aleph0_le πŸ“–mathematicalCardinal
instLE
aleph0
instAdd
instOne
β€”add_comm
card_ord
Ordinal.card_one
Ordinal.card_add
Ordinal.one_add_of_omega0_le
ord_aleph0
ord_le_ord
isSuccLimit_ord πŸ“–mathematicalCardinal
instLE
aleph0
Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
ord
β€”Ordinal.isSuccLimit_iff
Order.isSuccPrelimit_iff_succ_lt
aleph0_ne_zero
Ordinal.card_zero
canonicallyOrderedAdd
LE.le.trans
ord_le
nonpos_iff_eq_zero
Ordinal.canonicallyOrderedAdd
lt_imp_lt_of_le_imp_le
add_one_of_aleph0_le
Order.IsSuccLimit.le_succ_iff
ord_aleph0
Ordinal.isSuccLimit_omega0
Ordinal.card_succ
noMaxOrder πŸ“–mathematicalCardinal
instLE
aleph0
NoMaxOrder
Ordinal.ToType
ord
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
β€”Ordinal.toType_noMax_of_succ_lt
Order.IsSuccLimit.succ_lt
isSuccLimit_ord

Order.IsSuccLimit

Theorems

NameKindAssumesProvesValidatesDepends On
ordinalPred_eq πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.predβ€”Order.IsSuccPrelimit.ordinalPred_eq
isSuccPrelimit

Order.IsSuccPrelimit

Theorems

NameKindAssumesProvesValidatesDepends On
ordinalPred_eq πŸ“–mathematicalOrder.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.predβ€”Ordinal.pred_eq_of_isSuccPrelimit

Ordinal

Definitions

NameCategoryTheorems
boundedLimitRecOn πŸ“–CompOp
3 mathmath: boundedLimitRec_succ, boundedLimitRec_zero, boundedLimitRec_limit
div πŸ“–CompOp
28 mathmath: lt_mul_div_add, div_le, div_lt, lt_mul_succ_div, div_add_mod, mul_add_div, div_opow_log_pos, div_self, div_mul_cancel, CNF_ne_zero, div_opow_log_lt, div_le_left, div_eq_zero_of_lt, lt_div, Mathlib.Meta.NormNum.isNat_ordinalDiv, mul_add_div_mul, zero_div, div_pos, div_le_of_le_mul, mul_div_cancel, CNF.ne_zero, mul_div_mul_cancel, le_div, mod_def, div_one, div_zero, mul_div_le, natCast_div
limitRecOn πŸ“–CompOp
3 mathmath: limitRecOn_zero, limitRecOn_limit, limitRecOn_succ
monoid πŸ“–CompOp
6 mathmath: iSup_pow_natCast, Mathlib.Meta.NormNum.isNat_ordinalNPow, iSup_pow, natCast_pow, type_prod_lex, opow_natCast
monoidWithZero πŸ“–CompOp
103 mathmath: opow_mul, lt_omega0_opow_succ, isNormal_mul_right, principal_mul_of_le_two, mul_le_nmul, ONote.nf_repr_split', noZeroDivisors, antisymm, deriv_add_eq_mul_omega0_add, mulRightMono, CNF_foldr, lt_mul_div_add, add_log_le_log_mul, div_le, div_lt, opow_add, lt_mul_succ_div, ONote.repr_mul, div_add_mod, mul_add_div, principal_mul_omega0, nfp_mul_opow_omega0_add, IsInitial.principal_mul, opow_mul_add_pos, mul_le_mul_iff_left, mul_lt_of_lt_div, mul_lt_omega0_opow, natCast_mul_omega0, ONote.split_dvd, dvd_of_mod_eq_zero, mul_mod, principal_mul_ord, log_opow_mul, opow_one_add, opow_dvd_opow, opow_mul_add_lt_opow, smul_eq_mul, iSup_mul_nat, mul_lt_mul_iff_left, instPosMulStrictMono, nfp_mul_eq_opow_omega0, ONote.repr_scale, nfp_mul_zero, principal_mul_omega, mul_eq_right_iff_opow_omega0_dvd, mul_succ, Mathlib.Meta.NormNum.isNat_ordinalMul, opow_mul_add_lt_opow_mul, dvd_iff_mod_eq_zero, mul_lt_mul_of_pos_left, principal_add_mul_of_principal_add, lt_div, ONote.repr_opow_aux₁, iSup_mul_natCast, log_opow_mul_add, natCast_mul, mul_mod_mul, opow_dvd_opow_iff, le_mul_right, add_eq_right_iff_mul_omega0_le, mul_add_div_mul, mul_right_inj, mul_add_mod_self, opow_mul_add_lt_opow_succ, leftDistribClass, lt_omega0_opow, isSuccLimit_mul, CNF.foldr, mulLeftMono, principal_mul_two, deriv_mul_eq_opow_omega0_mul, principal_mul_iff_mul_left_eq, mul_div_cancel, add_mul_of_isSuccLimit, card_mul, mul_le_right_iff_opow_omega0_dvd, mul_sub, principal_mul_omega0_opow_opow, omega0_opow_mul_nat_lt, lt_mul_iff_of_isSuccLimit, add_mul_succ, mul_add_mod_mul, mul_omega0_opow_opow, nfp_mul_one, opow_succ, le_mul_left, opow_mul_add_lt_opow_mul_succ, nfp_add_zero, ONote.scale_opowAux, mul_div_mul_cancel, add_le_right_iff_mul_omega0_le, isSuccLimit_mul_left, lift_mul, mul_omega0, principal_mul_one, le_div, mul_pos, NONote.repr_mul, mod_def, isSuccLimit_iff_omega0_dvd, principal_mul_iff_le_two_or_omega0_opow_opow, mul_div_le, mul_le_iff_of_isSuccLimit
orderTopToTypeSucc πŸ“–CompOp
1 mathmath: enum_succ_eq_top
pred πŸ“–CompOp
15 mathmath: pred_succ, log_def, lift_pred, pred_le_self, pred_le_iff_le_succ, Order.IsSuccLimit.ordinalPred_eq, pred_surjective, pred_lt_iff_not_isSuccPrelimit, pred_eq_iff_isSuccPrelimit, pred_zero, Order.IsSuccPrelimit.ordinalPred_eq, lt_pred_iff_succ_lt, succ_pred_eq_iff_not_isSuccPrelimit, self_le_succ_pred, pred_eq_of_isSuccPrelimit
pred_succ_gi πŸ“–CompOpβ€”
sub πŸ“–CompOp
25 mathmath: sub_zero, sub_eq_zero_iff_le, zero_opow', zero_sub, natCast_sub, lt_sub, le_sub_of_le, sub_self, add_sub_cancel, sub_lt_of_le, sub_le, Mathlib.Meta.NormNum.isNat_ordinalSub, sub_le_self, le_sub_of_add_le, sub_eq_of_add_eq, mul_sub, add_sub_cancel_of_le, add_sub_add_cancel, sub_lt_of_lt_add, NONote.repr_sub, sub_sub, le_add_sub, mod_def, ONote.repr_sub, isSuccLimit_sub

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_zero_iff πŸ“–mathematicalβ€”Ordinal
add
zero
β€”inductionOnβ‚‚
Sum.instIsWellOrderLex
isEmpty_sum
add_le_add_iff_right πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”Nat.cast_zero
add_zero
add_succ
instNoMaxOrder
add_le_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
Preorder.toLT
β€”Iff.not
lt_add_iff
add_le_iff_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
add
β€”Iff.not
lt_add_iff_of_isSuccLimit
add_mul_of_isSuccLimit πŸ“–mathematicalOrdinal
add
Order.IsSuccLimit
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”add_mul_succ
add_mul_succ πŸ“–mathematicalOrdinal
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”succ_zero
mul_one
mul_succ
add_assoc
add_omega0 πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
addβ€”lt_omega0
natCast_add_omega0
add_right_cancel πŸ“–mathematicalβ€”Ordinal
add
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”β€”
add_sub_add_cancel πŸ“–mathematicalβ€”Ordinal
sub
add
β€”sub_sub
add_sub_cancel
add_sub_cancel πŸ“–mathematicalβ€”Ordinal
sub
add
β€”instIsLeftCancelAdd
add_sub_cancel_of_le
le_self_add
canonicallyOrderedAdd
add_sub_cancel_of_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
sub
β€”ExistsAddOfLE.exists_add_of_le
existsAddOfLE
antisymm πŸ“–mathematicalβ€”Ordinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
β€”dvd_antisymm
boundedLimitRec_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Set
Set.instMembership
Set.Iio
boundedLimitRecOnβ€”Order.IsSuccLimit.bot_lt
Order.IsSuccLimit.succ_lt
boundedLimitRecOn.eq_1
limitRecOn_limit
boundedLimitRec_succ πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
boundedLimitRecOn
Set
Set.instMembership
Set.Iio
Order.succ
instSuccOrder
Order.IsSuccLimit.succ_lt
β€”Order.IsSuccLimit.bot_lt
Order.IsSuccLimit.succ_lt
boundedLimitRecOn.eq_1
limitRecOn_succ
boundedLimitRec_zero πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
boundedLimitRecOn
Set
Set.instMembership
Set.Iio
zero
Order.IsSuccLimit.bot_lt
instOrderBot
β€”Order.IsSuccLimit.bot_lt
Order.IsSuccLimit.succ_lt
boundedLimitRecOn.eq_1
limitRecOn_zero
bounded_singleton πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
type
Set.Bounded
Set
Set.instSingletonSet
β€”Order.IsSuccLimit.succ_lt
typein_lt_type
Set.mem_singleton_iff
enum_typein
enum_lt_enum
Order.lt_succ
instNoMaxOrder
card_mul πŸ“–mathematicalβ€”card
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Cardinal
Cardinal.instMul
β€”mul_comm
div_add_mod πŸ“–mathematicalβ€”Ordinal
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
div
mod
β€”add_sub_cancel_of_le
mul_div_le
div_eq_zero_of_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
div
zero
β€”nonpos_iff_eq_zero
canonicallyOrderedAdd
div_le
pos_iff_ne_zero
LE.le.trans_lt
zero_le
succ_zero
mul_one
div_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
div
Preorder.toLT
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
instSuccOrder
β€”LT.lt.trans_le
lt_mul_succ_div
mul_le_mul_right
mulLeftMono
Order.succ_le_succ_iff
instNoMaxOrder
csInf_le'
div_le_left πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
divβ€”eq_or_ne
div_zero
le_refl
le_div
LE.le.trans
mul_div_le
div_le_of_le_mul πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
divβ€”eq_or_ne
div_zero
canonicallyOrderedAdd
div_le
LE.le.trans_lt
mul_lt_mul_of_pos_left
instPosMulStrictMono
Order.lt_succ
instNoMaxOrder
pos_iff_ne_zero
div_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
div
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”lt_iff_lt_of_le_iff_le
le_div
div_mul_cancel πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
div
β€”mul_div_cancel
div_one πŸ“–mathematicalβ€”Ordinal
div
one
β€”one_mul
mul_div_cancel
one_ne_zero
div_pos πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
div
Preorder.toLE
β€”lt_div
succ_zero
mul_one
div_self πŸ“–mathematicalβ€”Ordinal
div
one
β€”mul_one
mul_div_cancel
div_zero πŸ“–mathematicalβ€”Ordinal
div
zero
β€”β€”
dvd_add_iff πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
addβ€”mul_sub
add_sub_cancel
mul_add
leftDistribClass
dvd_mul_right
dvd_antisymm πŸ“–β€”Ordinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
β€”β€”eq_zero_of_zero_dvd
LE.le.antisymm
le_of_dvd
dvd_iff_mod_eq_zero πŸ“–mathematicalβ€”Ordinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
mod
zero
β€”mod_eq_zero_of_dvd
dvd_of_mod_eq_zero
dvd_of_mod_eq_zero πŸ“–mathematicalOrdinal
mod
zero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
β€”add_zero
div_add_mod
enum_succ_eq_top πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
ToType
Order.succ
instSuccOrder
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
isWellOrder_lt
wellFoundedLT_toType
Set
Set.instMembership
RelIso.instFunLike
enum
Order.lt_succ
instNoMaxOrder
IsWellOrder
type_toType
Top.top
OrderTop.toTop
Preorder.toLE
orderTopToTypeSucc
β€”isWellOrder_lt
wellFoundedLT_toType
Order.lt_succ
instNoMaxOrder
type_toType
eq_nat_or_omega0_le πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
β€”lt_or_ge
lt_omega0
has_succ_of_type_succ_lt πŸ“–β€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Order.succ
instSuccOrder
type
β€”β€”typein_lt_type
enum_typein
enum_lt_enum
Order.lt_succ_iff
instNoMaxOrder
le_refl
instAddLeftReflectLE πŸ“–mathematicalβ€”AddLeftReflectLE
Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”inductionOn₃
InitialSeg.eq
Sum.instIsWellOrderLex
RelEmbedding.ordinal_type_le
IsWellOrder.toTrichotomous
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
InitialSeg.map_rel_iff
instAddLeftReflectLT πŸ“–mathematicalβ€”AddLeftReflectLT
Ordinal
add
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”β€”
instAddLeftStrictMono πŸ“–mathematicalβ€”AddLeftStrictMono
Ordinal
add
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”β€”
instAddRightReflectLT πŸ“–mathematicalβ€”AddRightReflectLT
Ordinal
add
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”lt_imp_lt_of_le_imp_le
add_le_add_left
instAddRightMono
instCharZero πŸ“–mathematicalβ€”CharZero
Ordinal
addMonoidWithOne
β€”Cardinal.instCharZero
Cardinal.ord_nat
instIsLeftCancelAdd πŸ“–mathematicalβ€”IsLeftCancelAdd
Ordinal
add
β€”instAddLeftMono
instAddLeftReflectLE
instPosMulStrictMono πŸ“–mathematicalβ€”PosMulStrictMono
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
zero
PartialOrder.toPreorder
partialOrder
β€”Order.IsNormal.strictMono
isNormal_mul_right
isNormal_add_right πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
instLinearOrder
add
β€”Order.isNormal_iff
add_right_strictMono
instAddLeftStrictMono
add_le_iff_of_isSuccLimit
isNormal_iff_strictMono_limit πŸ“–mathematicalβ€”IsNormal
StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
β€”Order.isNormal_iff
isNormal_mul_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Order.IsNormal
instLinearOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”Order.IsNormal.of_succ_lt
wellFoundedLT
mul_succ
instAddLeftStrictMono
instAddLeftReflectLT
add_zero
add_lt_add_iff_left
mul_le_iff_of_isSuccLimit
mul_le_mul_right
mulLeftMono
LT.lt.le
isSuccLimit_add πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
addβ€”Order.IsNormal.map_isSuccLimit
isNormal_add_right
isSuccLimit_add_iff πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
add
zero
β€”add_zero
add_sub_cancel
isSuccLimit_sub
add_lt_add_iff_left
instAddLeftStrictMono
instAddLeftReflectLT
pos_iff_ne_zero
canonicallyOrderedAdd
isSuccLimit_add
isSuccLimit_add_iff_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
add
Order.IsSuccPrelimit
Preorder.toLT
β€”isSuccLimit_add_iff
eq_or_ne
isSuccLimit_iff πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Order.IsSuccPrelimit
Preorder.toLT
β€”bot_eq_zero'
canonicallyOrderedAdd
isSuccLimit_iff_omega0_dvd πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
omega0
β€”Order.IsSuccLimit.ne_bot
le_antisymm
Order.IsSuccLimit.le_iff_forall_le
le_of_lt
div_lt
omega0_ne_zero
Order.succ_le_iff
instNoMaxOrder
le_div
mul_succ
add_le_iff_of_isSuccLimit
isSuccLimit_omega0
lt_omega0
le_imp_le_of_le_of_le
add_le_add_left
instAddRightMono
mul_div_le
le_refl
LT.lt.le
lt_sub
natCast_lt_of_isSuccLimit
isSuccLimit_sub
isSuccLimit_mul_left
pos_iff_ne_zero
canonicallyOrderedAdd
MulZeroClass.mul_zero
isSuccLimit_lift πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
lift
β€”InitialSeg.isSuccLimit_apply_iff
isSuccLimit_mul πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Order.IsSuccLimit
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”Order.IsNormal.map_isSuccLimit
isNormal_mul_right
isSuccLimit_mul_left πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
zero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”zero_or_succ_or_isSuccLimit
LT.lt.false
mul_succ
isSuccLimit_add
isSuccLimit_mul
Order.IsSuccLimit.bot_lt
isSuccLimit_omega0 πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
omega0
β€”isSuccLimit_iff
Order.isSuccPrelimit_iff_succ_lt
omega0_ne_zero
lt_omega0
nat_lt_omega0
isSuccLimit_sub πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
subβ€”isSuccLimit_iff
sub_ne_zero_iff_lt
Order.isSuccPrelimit_iff_succ_lt
lt_sub
add_succ
Order.IsSuccLimit.succ_lt
isSuccPrelimit_lift πŸ“–mathematicalβ€”Order.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
β€”InitialSeg.isSuccPrelimit_apply_iff
isSuccPrelimit_zero πŸ“–mathematicalβ€”Order.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
β€”Order.isSuccPrelimit_bot
le_add_sub πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
sub
β€”le_or_gt
Eq.ge
add_sub_cancel_of_le
add_zero
LT.lt.le
le_div πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
div
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”canonicallyOrderedAdd
MulZeroClass.mul_zero
Order.succ_le_iff
instNoMaxOrder
lt_div
le_mul_left πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mul_one
mul_le_mul_right
mulLeftMono
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
le_mul_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”one_mul
mul_le_mul_left
mulRightMono
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
le_of_dvd πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”mul_one
mul_le_mul_right
mulLeftMono
one_le_iff_ne_zero
MulZeroClass.mul_zero
le_of_mul_le_mul_left πŸ“–β€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Preorder.toLT
zero
β€”β€”mul_le_mul_iff_rightβ‚€
PosMulStrictMono.toPosMulMono
instPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
le_sub_of_add_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
subβ€”add_le_add_iff_left
instAddLeftMono
instAddLeftReflectLE
LE.le.trans
le_add_sub
le_sub_of_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
sub
add
β€”add_le_add_iff_left
instAddLeftMono
instAddLeftReflectLE
add_sub_cancel_of_le
leftDistribClass πŸ“–mathematicalβ€”LeftDistribClass
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
add
β€”Sum.instIsWellOrderLex
left_eq_zero_of_add_eq_zero πŸ“–β€”Ordinal
add
zero
β€”β€”add_eq_zero_iff
lift_add πŸ“–mathematicalβ€”lift
Ordinal
add
β€”Sum.instIsWellOrderLex
lift_mul πŸ“–mathematicalβ€”lift
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”β€”
lift_natCast πŸ“–mathematicalβ€”lift
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”Nat.cast_zero
lift_zero
Nat.cast_add
Nat.cast_one
lift_succ
lift_ofNat πŸ“–mathematicalβ€”lift
Ordinal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”lift_natCast
lift_pred πŸ“–mathematicalβ€”lift
pred
β€”Order.mem_range_succ_or_isSuccPrelimit
pred_succ
lift_succ
Order.IsSuccPrelimit.ordinalPred_eq
pred_eq_iff_isSuccPrelimit
isSuccPrelimit_lift
lift_succ πŸ“–mathematicalβ€”lift
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”add_one_eq_succ
lift_add
lift_one
limitRecOn_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
limitRecOnβ€”SuccOrder.limitRecOn_of_isSuccLimit
wellFoundedLT
limitRecOn_succ πŸ“–mathematicalβ€”limitRecOn
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”SuccOrder.limitRecOn_succ
wellFoundedLT
instNoMaxOrder
limitRecOn_zero πŸ“–mathematicalβ€”limitRecOn
Ordinal
zero
β€”SuccOrder.limitRecOn_isMin
wellFoundedLT
isMin_bot
lt_add_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
add
Preorder.toLE
β€”sub_lt_of_lt_add
Ne.bot_lt
le_add_sub
LE.le.trans_lt
add_lt_add_right
instAddLeftStrictMono
lt_add_iff_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
add
β€”lt_add_iff
Order.IsSuccLimit.ne_bot
Order.IsSuccLimit.succ_lt
add_succ
Order.lt_succ_iff
instNoMaxOrder
LT.lt.le
lt_div πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
div
Preorder.toLE
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
instSuccOrder
β€”not_le
div_le
not_lt
lt_mul_div_add πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
div
β€”mul_succ
lt_mul_succ_div
lt_mul_iff_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”Iff.not
mul_le_iff_of_isSuccLimit
lt_mul_succ_div πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
instSuccOrder
div
β€”csInf_mem
wellFoundedLT
lt_omega0 πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”β€”
lt_pred_iff_succ_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
pred
Order.succ
instSuccOrder
β€”le_iff_le_iff_lt_iff_lt
pred_le_iff_le_succ
lt_sub πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
sub
add
β€”lt_iff_lt_of_le_iff_le
sub_le
mk_Iio_ordinal πŸ“–mathematicalβ€”Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
Cardinal.lift
card
β€”lift_card
isWellOrder_lt
wellFoundedLT
typein_ordinal
mod_def πŸ“–mathematicalβ€”Ordinal
mod
sub
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
div
β€”β€”
mod_eq_of_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
modβ€”div_eq_zero_of_lt
MulZeroClass.mul_zero
sub_zero
mod_eq_zero_of_dvd πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
mod
zero
β€”eq_or_ne
MulZeroClass.zero_mul
mod_self
mul_div_cancel
sub_self
mod_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
mod
β€”sub_le_self
mod_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
mod
β€”add_lt_add_iff_left
instAddLeftStrictMono
instAddLeftReflectLT
div_add_mod
lt_mul_div_add
mod_mod πŸ“–mathematicalβ€”Ordinal
mod
β€”mod_mod_of_dvd
dvd_rfl
mod_mod_of_dvd πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
modβ€”div_add_mod
mul_assoc
mul_add_mod_self
mod_one πŸ“–mathematicalβ€”Ordinal
mod
one
zero
β€”div_one
one_mul
sub_self
mod_self πŸ“–mathematicalβ€”Ordinal
mod
zero
β€”zero_mod
div_self
mul_one
sub_self
mod_zero πŸ“–mathematicalβ€”Ordinal
mod
zero
β€”div_zero
MulZeroClass.zero_mul
sub_zero
mulLeftMono πŸ“–mathematicalβ€”MulLeftMono
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”RelEmbedding.ordinal_type_le
Prod.trichotomous
IsWellOrder.toTrichotomous
Prod.instAsymmLex_mathlib
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
RelEmbedding.map_rel_iff
mulRightMono πŸ“–mathematicalβ€”MulRightMono
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”RelEmbedding.ordinal_type_le
Prod.trichotomous
IsWellOrder.toTrichotomous
Prod.instAsymmLex_mathlib
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
RelEmbedding.map_rel_iff
mul_add_div πŸ“–mathematicalβ€”Ordinal
div
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”le_antisymm
div_le
mul_succ
mul_add
leftDistribClass
add_assoc
add_lt_add_iff_left
instAddLeftStrictMono
instAddLeftReflectLT
lt_mul_div_add
le_div
add_le_add_iff_left
instAddLeftMono
instAddLeftReflectLE
mul_div_le
mul_add_div_mul πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
div
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”LT.lt.ne'
LE.le.trans_lt
zero_le
canonicallyOrderedAdd
eq_or_ne
MulZeroClass.mul_zero
div_zero
mul_ne_zero
noZeroDivisors
le_antisymm
Order.lt_succ_iff
instNoMaxOrder
div_lt
mul_assoc
LT.lt.trans_le
add_lt_add_right
instAddLeftStrictMono
mul_succ
mul_le_mul_right
mulLeftMono
Order.succ_le_iff
lt_mul_succ_div
le_div
le_imp_le_of_le_of_le
mul_div_le
le_refl
le_self_add
mul_add_mod_mul πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
mod
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mod_def
mul_add_div_mul
sub_eq_of_add_eq
add_assoc
mul_assoc
mul_add
leftDistribClass
div_add_mod
mul_add_mod_self πŸ“–mathematicalβ€”Ordinal
mod
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”eq_or_ne
MulZeroClass.zero_mul
zero_add
mod_zero
mod_def
mul_add_div
mul_add
leftDistribClass
sub_sub
add_sub_cancel
mul_div_cancel πŸ“–mathematicalβ€”Ordinal
div
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”add_zero
zero_div
mul_add_div
mul_div_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
div
β€”div_zero
MulZeroClass.mul_zero
canonicallyOrderedAdd
le_div
le_rfl
mul_div_mul_cancel πŸ“–mathematicalβ€”Ordinal
div
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”add_zero
mul_add_div_mul
pos_iff_ne_zero
canonicallyOrderedAdd
mul_le_iff_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”LE.le.trans
mul_le_mul_right
mulLeftMono
LT.lt.le
le_of_not_gt
inductionOn
mul_le_mul_iff_left πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mul_le_mul_iff_rightβ‚€
PosMulStrictMono.toPosMulMono
instPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
mul_lt_mul_iff_left πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mul_lt_mul_iff_rightβ‚€
instPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_lt_mul_of_pos_left πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mul_lt_mul_of_pos_left
instPosMulStrictMono
mul_lt_of_lt_div πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
div
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”lt_imp_lt_of_le_imp_le
div_le_of_le_mul
mul_mod πŸ“–mathematicalβ€”Ordinal
mod
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
zero
β€”add_zero
zero_mod
mul_add_mod_self
mul_mod_mul πŸ“–mathematicalβ€”Ordinal
mod
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”eq_zero_or_pos
canonicallyOrderedAdd
MulZeroClass.zero_mul
mod_self
add_zero
mul_add_mod_mul
mul_ne_zero πŸ“–β€”β€”β€”β€”mul_ne_zero
noZeroDivisors
mul_pos πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mul_pos
instPosMulStrictMono
mul_right_inj πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”mul_left_cancel_iff_of_pos
PosMulStrictMono.toPosMulReflectLE
instPosMulStrictMono
mul_sub πŸ“–mathematicalβ€”Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
sub
β€”MulZeroClass.zero_mul
sub_self
eq_of_forall_ge_iff
sub_le
le_div
mul_add_div
mul_succ πŸ“–mathematicalβ€”Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
add
β€”mul_add_one
leftDistribClass
natCast_add_of_omega0_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
add
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”add_sub_cancel_of_le
add_assoc
natCast_add_omega0
natCast_add_omega0 πŸ“–mathematicalβ€”Ordinal
add
AddMonoidWithOne.toNatCast
addMonoidWithOne
omega0
β€”le_antisymm
le_of_forall_lt
lt_add_iff
omega0_ne_zero
lt_omega0
LE.le.trans_lt
nat_lt_omega0
le_add_self
canonicallyOrderedAdd
natCast_div πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
div
β€”eq_or_ne
Nat.cast_zero
div_zero
Nat.cast_ne_zero
instCharZero
le_antisymm
le_div
natCast_mul
Nat.cast_le
instAddLeftMono
instZeroLEOneClass
mul_comm
div_le
add_one_eq_succ
Nat.cast_succ
Nat.cast_lt
natCast_lt_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”bot_eq_zero'
canonicallyOrderedAdd
zero_add
Order.IsSuccLimit.add_natCast_lt
Order.IsSuccLimit.bot_lt
natCast_mod πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
mod
β€”add_left_cancel_iff
instIsLeftCancelAdd
div_add_mod
natCast_div
natCast_mul
Nat.cast_add
natCast_mod_omega0 πŸ“–mathematicalβ€”Ordinal
mod
AddMonoidWithOne.toNatCast
addMonoidWithOne
omega0
β€”mod_eq_of_lt
nat_lt_omega0
natCast_mul πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”MulZeroClass.mul_zero
Nat.cast_zero
Nat.cast_add
Nat.cast_succ
mul_add_one
leftDistribClass
natCast_sub πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
sub
β€”le_total
tsub_eq_zero_iff_le
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sub_eq_zero_iff_le
Nat.cast_le
instAddLeftMono
instZeroLEOneClass
instCharZero
Nat.cast_zero
add_left_cancel_iff
instIsLeftCancelAdd
Nat.cast_add
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_sub_cancel_of_le
nat_lt_omega0 πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
omega0
β€”lt_omega0
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
zero
β€”β€”
not_isSuccLimit_zero πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
zero
β€”Order.not_isSuccLimit_bot
omega0_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”LE.le.trans
LT.lt.le
nat_lt_omega0
le_of_forall_lt
lt_omega0
Order.succ_le_iff
instNoMaxOrder
omega0_le_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
omega0
β€”omega0_le
le_of_lt
natCast_lt_of_isSuccLimit
omega0_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
omega0_pos
omega0_pos πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
omega0
β€”nat_lt_omega0
one_add_natCast πŸ“–mathematicalβ€”Ordinal
add
one
AddMonoidWithOne.toNatCast
addMonoidWithOne
Order.succ
Nat.instPreorder
Nat.instSuccOrder
β€”Nat.cast_one
Nat.cast_add
add_comm
one_add_ofNat πŸ“–mathematicalβ€”Ordinal
add
one
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”one_add_natCast
one_add_of_omega0_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
add
one
β€”Nat.cast_one
natCast_add_of_omega0_le
one_add_omega0 πŸ“–mathematicalβ€”Ordinal
add
one
omega0
β€”Nat.cast_one
natCast_add_omega0
one_lt_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
one
β€”Nat.cast_one
natCast_lt_of_isSuccLimit
one_lt_omega0 πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
omega0
β€”Nat.cast_one
nat_lt_omega0
pred_eq_iff_isSuccPrelimit πŸ“–mathematicalβ€”pred
Order.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”Order.mem_range_succ_or_isSuccPrelimit
pred_succ
instNoMaxOrder
LT.lt.ne
Order.lt_succ
Order.IsSuccPrelimit.ordinalPred_eq
pred_eq_of_isSuccPrelimit πŸ“–mathematicalOrder.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
predβ€”Order.isSuccPrelimitRecOn_of_isSuccPrelimit
pred_le_iff_le_succ πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
pred
Order.succ
instSuccOrder
β€”Order.mem_range_succ_or_isSuccPrelimit
pred_succ
instNoMaxOrder
Order.IsSuccPrelimit.ordinalPred_eq
Order.IsSuccPrelimit.le_succ_iff
pred_le_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
pred
β€”Order.le_succ
pred_lt_iff_not_isSuccPrelimit πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
pred
Order.IsSuccPrelimit
β€”LE.le.lt_iff_ne
pred_le_self
Iff.not
pred_eq_iff_isSuccPrelimit
pred_succ πŸ“–mathematicalβ€”pred
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”Order.isSuccPrelimitRecOn_succ
instNoMaxOrder
pred_surjective πŸ“–mathematicalβ€”Ordinal
pred
β€”GaloisInsertion.l_surjective
pred_zero πŸ“–mathematicalβ€”pred
Ordinal
zero
β€”Order.IsSuccPrelimit.ordinalPred_eq
isSuccPrelimit_zero
right_eq_zero_of_add_eq_zero πŸ“–β€”Ordinal
add
zero
β€”β€”add_eq_zero_iff
self_le_succ_pred πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Order.succ
instSuccOrder
pred
β€”GaloisConnection.le_u_l
GaloisInsertion.gc
smul_eq_mul πŸ“–mathematicalβ€”Ordinal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
addMonoidWithOne
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
AddMonoidWithOne.toNatCast
β€”zero_nsmul
Nat.cast_zero
MulZeroClass.mul_zero
succ_nsmul
Nat.cast_add
mul_add
leftDistribClass
Nat.cast_one
mul_one
sub_eq_of_add_eq πŸ“–mathematicalOrdinal
add
subβ€”add_sub_cancel
sub_eq_zero_iff_le πŸ“–mathematicalβ€”Ordinal
sub
zero
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”canonicallyOrderedAdd
add_zero
sub_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
sub
add
β€”LE.le.trans
le_add_sub
add_le_add_right
instAddLeftMono
le_or_gt
add_le_add_iff_left
instAddLeftReflectLE
add_sub_cancel_of_le
canonicallyOrderedAdd
sub_le_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
sub
β€”sub_le
le_add_self
canonicallyOrderedAdd
sub_lt_of_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Preorder.toLT
sub
add
β€”lt_iff_lt_of_le_iff_le
le_sub_of_le
sub_lt_of_lt_add πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
add
zero
subβ€”lt_or_ge
sub_eq_zero_iff_le
LT.lt.le
sub_lt_of_le
sub_ne_zero_iff_lt πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”Iff.not
sub_eq_zero_iff_le
sub_self πŸ“–mathematicalβ€”Ordinal
sub
zero
β€”add_zero
add_sub_cancel
sub_sub πŸ“–mathematicalβ€”Ordinal
sub
add
β€”eq_of_forall_ge_iff
sub_le
add_assoc
sub_zero πŸ“–mathematicalβ€”Ordinal
sub
zero
β€”zero_add
add_sub_cancel
succ_pred_eq_iff_not_isSuccPrelimit πŸ“–mathematicalβ€”Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
pred
Order.IsSuccPrelimit
Preorder.toLT
β€”LE.le.ge_iff_eq'
self_le_succ_pred
Order.succ_le_iff
instNoMaxOrder
pred_lt_iff_not_isSuccPrelimit
toType_noMax_of_succ_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Order.succ
instSuccOrder
NoMaxOrder
ToType
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
β€”has_succ_of_type_succ_lt
isWellOrder_lt
wellFoundedLT_toType
type_toType
type_prod_lex πŸ“–mathematicalβ€”type
instIsWellOrderProdLex
Ordinal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
β€”instIsWellOrderProdLex
typein_ordinal πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
isWellOrder_lt
instLinearOrder
wellFoundedLT
lift
β€”isWellOrder_lt
wellFoundedLT
zero_div πŸ“–mathematicalβ€”Ordinal
div
zero
β€”nonpos_iff_eq_zero
canonicallyOrderedAdd
div_le_of_le_mul
zero_le
zero_mod πŸ“–mathematicalβ€”Ordinal
mod
zero
β€”zero_div
MulZeroClass.mul_zero
sub_self
zero_or_succ_or_isSuccLimit πŸ“–mathematicalβ€”Ordinal
zero
Set
Set.instMembership
Set.range
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
Order.IsSuccLimit
β€”bot_eq_zero'
canonicallyOrderedAdd
Order.isMin_or_mem_range_succ_or_isSuccLimit
zero_sub πŸ“–mathematicalβ€”Ordinal
sub
zero
β€”canonicallyOrderedAdd
sub_le_self

Ordinal.IsNormal

Theorems

NameKindAssumesProvesValidatesDepends On
id_le πŸ“–mathematicalOrdinal.IsNormalPi.hasLe
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.id_le
Ordinal.wellFoundedLT
strictMono
inj πŸ“–β€”Ordinal.IsNormalβ€”β€”StrictMono.injective
strictMono
isSuccLimit πŸ“–β€”Ordinal.IsNormal
Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
β€”β€”Order.IsNormal.map_isSuccLimit
le_apply πŸ“–mathematicalOrdinal.IsNormalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.le_apply
Ordinal.wellFoundedLT
strictMono
le_iff πŸ“–mathematicalOrdinal.IsNormalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.le_iff_le
strictMono
le_iff_eq πŸ“–mathematicalOrdinal.IsNormalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”LE.le.ge_iff_eq'
le_apply
le_set πŸ“–β€”Ordinal.IsNormal
Set.Nonempty
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”β€”Order.IsNormal.map_isLUB
le_rfl
LE.le.trans
Set.mem_image_of_mem
le_set' πŸ“–β€”Ordinal.IsNormal
Set.Nonempty
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”β€”le_set
Set.Nonempty.image
limit_le πŸ“–mathematicalOrdinal.IsNormal
Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Preorder.toLEβ€”Order.IsNormal.le_iff_forall_le
limit_lt πŸ“–mathematicalOrdinal.IsNormal
Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Preorder.toLTβ€”Order.IsNormal.lt_iff_exists_lt
lt_iff πŸ“–mathematicalOrdinal.IsNormalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.lt_iff_lt
strictMono
monotone πŸ“–mathematicalOrdinal.IsNormalMonotone
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
β€”StrictMono.monotone
strictMono
refl πŸ“–mathematicalβ€”Ordinal.IsNormal
Ordinal
β€”Order.IsNormal.id
strictMono πŸ“–mathematicalOrdinal.IsNormalStrictMono
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
β€”Order.IsNormal.strictMono
trans πŸ“–mathematicalOrdinal.IsNormalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
β€”Order.IsNormal.comp

---

← Back to Index