Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/SetTheory/Ordinal/Basic.lean

Statistics

MetricCount
DefinitionsgciOrdCard, ord, orderEmbedding, toTypeOrderBot, univ, ToType, mk, toOrd, add, addMonoidWithOne, card, enum, enumIsoToType, inhabited, initialSegToType, instCoeOutToType, instCoeToTypeElemIio, instConditionallyCompleteLinearOrderBot, instLinearOrder, instOrderBot, instSuccAddOrder, instSuccOrder, instSuccOrderToType, isEquivalent, liftInitialSeg, liftOnWellOrder, liftPrincipalSeg, omega0, one, partialOrder, principalSegToType, termTypeLT_, termฯ‰, toType, toTypeOrderBot, type, typein, uniqueIioOne, uniqueToTypeOne, univ, wellFoundedRelation, zero, WellOrder, inhabited, r, ฮฑ, hasWellFounded_toType, linearOrder_toType
48
Theoremsuniv, aleph0_lt_univ, bddAbove_ord_image_iff, card_le_iff, card_le_of_le_ord, card_ord, card_surjective, card_typein_lt, card_typein_toType_lt, gc_ord_card, isNormal_ord, lift_lt_univ, lift_lt_univ', lift_ord, lift_univ, lt_ord, lt_ord_succ_card, lt_univ, lt_univ', mk_Iio_ord_toType, mk_ord_toType, mk_toType, nat_lt_univ, omega0_le_ord, omega0_lt_ord, orderEmbedding_coe, ord_aleph0, ord_card_le, ord_eq, ord_eq_Inf, ord_eq_omega0, ord_eq_one, ord_eq_zero, ord_inj, ord_injective, ord_le, ord_le_omega0, ord_le_ord, ord_le_type, ord_lt_omega0, ord_lt_ord, ord_mono, ord_nat, ord_ofNat, ord_one, ord_strictMono, ord_univ, ord_zero, small_iff_lift_mk_lt_univ, univ_id, univ_ne_zero, univ_pos, univ_umax, ordinal_type_le, lt_ord_of_lt, lt_ord_of_lt, Iio_one_default_eq, mk_apply, mk_symm_apply_coe, add_one_eq_succ, add_succ, aleph0_le_card, bot_eq_zero, canonicallyOrderedAdd, card_add, card_eq_nat, card_eq_ofNat, card_eq_one, card_eq_zero, card_le_card, card_le_nat, card_le_ofNat, card_le_one, card_lt_aleph0, card_lt_nat, card_lt_ofNat, card_nat, card_ofNat, card_omega0, card_one, card_succ, card_type, card_typein, card_univ, card_zero, enum_inj, enum_le_enum, enum_le_enum', enum_lt_enum, enum_symm_apply_coe, enum_type, enum_typein, enum_zero_eq_bot, enum_zero_le, enum_zero_le', eq_zero_or_pos, existsAddOfLE, induction, inductionOn, inductionOnWellOrder, inductionOnโ‚‚, inductionOnโ‚ƒ, instAddLeftMono, instAddRightMono, instIsEmptyIioZero, instNeZeroOne, instNoMaxOrder, instZeroLEOneClass, isEmpty_toType_zero, le_add_left, le_add_right, le_enum_succ, le_lift_iff, le_one_iff, le_zero, liftInitialSeg_coe, liftOnWellOrder_type, liftPrincipalSeg_coe, liftPrincipalSeg_top, liftPrincipalSeg_top', lift_card, lift_id, lift_id', lift_inj, lift_le, lift_lift, lift_lt, lift_omega0, lift_one, lift_type_eq, lift_type_le, lift_type_lt, lift_typein_top, lift_umax, lift_univ, lift_uzero, lift_zero, lt_lift_iff, lt_one_iff_zero, lt_wf, max_eq_zero, max_zero_left, max_zero_right, mem_range_lift_of_card_le, mem_range_lift_of_le, mem_range_typein_iff, natCast_succ, nat_le_card, nat_lt_card, nontrivial, not_lt_zero, ofNat_le_card, ofNat_lt_card, one_le_card, one_le_iff_ne_zero, one_lt_card, one_ne_zero, one_toType_eq, relIso_enum, relIso_enum', sInf_empty, small_Icc, small_Ico, small_Iic, small_Iio, small_Ioc, small_Ioo, succ_ne_zero, succ_one, succ_pos, succ_zero, toType_empty_iff_eq_zero, toType_nonempty_iff_ne_zero, top_typein, type_empty, type_eq, type_eq_one_iff_unique, type_eq_one_of_unique, type_eq_zero_iff_isEmpty, type_eq_zero_of_empty, type_fin, type_fintype, type_le_iff, type_le_iff', type_lift_preimage, type_lt_iff, type_nat_lt, type_ne_zero_iff_nonempty, type_ne_zero_of_nonempty, type_pEmpty, type_pUnit, type_preimage, type_subrel, type_sum_lex, type_toType, type_uLift, type_unit, typein_apply, typein_enum, typein_inj, typein_injective, typein_le_typein, typein_le_typein', typein_lt_self, typein_lt_type, typein_lt_typein, typein_one_toType, typein_surj, typein_surjOn, typein_top, univ_id, univ_umax, wellFoundedLT, zero_lt_card, ordinal_type_lt, ordinal_type_le, ordinal_lift_type_eq, ordinal_type_eq, wo, wellFoundedLT_toType
220
Total268

Cardinal

Definitions

NameCategoryTheorems
gciOrdCard ๐Ÿ“–CompOpโ€”
ord ๐Ÿ“–CompOp
117 mathmath: lt_ord_succ_card, le_beth_ord, ord_inj, Ordinal.sInf_compl_lt_lift_ord_succ, isSuccLimit_ord, Field.Emb.Cardinal.directed_filtration, ord.orderEmbedding_coe, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, Field.Emb.Cardinal.filtration_succ, OrdinalApprox.gfpApprox_ord_mem_fixedPoint, ord_aleph0, Ordinal.principal_opow_ord, Ordinal.principal_add_ord, Ordinal.isInitialIso_symm_apply_coe, bddAbove_ord_image_iff, Ordinal.isInitial_ord, ord_eq_zero, lt_power_cof, Field.Emb.Cardinal.two_le_deg, Field.Emb.Cardinal.isLeast_leastExt, Field.Emb.Cardinal.succEquiv_coherence, noMaxOrder, CategoryTheory.OrthogonalReflection.iteration_map_succ, ord_univ, card_le_iff, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, Field.Emb.Cardinal.noMaxOrder_rank_toType, Ordinal.principal_mul_ord, le_preAleph_ord, Ordinal.exists_fundamental_sequence, Ordinal.sSup_ord, le_aleph_ord, Ordinal.IsInitial.ord_card, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, lift_ord, lt_cof_power, ord_eq_one, CategoryTheory.instIsCardinalFilteredToTypeOrd, CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT, Field.Emb.Cardinal.strictMono_leastExt, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasIterationOfShape, ord_aleph, OrdinalApprox.lfpApprox_ord_eq_lfp, ord_le, Field.Emb.Cardinal.equivSucc_coherence, ord_zero, ord_eq_Inf, OrdinalApprox.lfpApprox_ord_mem_fixedPoint, ord_le_ord, CategoryTheory.SmallObject.ฮนFunctorObj_eq, omega0_le_ord, card_typein_toType_lt, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, ord_ofNat, OrdinalApprox.gfpApprox_ord_eq_gfp, ord_lt_omega0, ord_preAleph, CategoryTheory.ObjectProperty.isoClosure_strictLimitsClosureIter_eq_limitsClosure, CategoryTheory.OrthogonalReflection.iteration_map_succ_assoc, Ordinal.ord_cof_le, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, Field.Emb.Cardinal.filtration_apply, mk_subset_mk_lt_cof, le_preBeth_ord, Ordinal.cof_cof, OrdinalApprox.exists_gfpApprox_eq_gfpApprox, not_injective_limitation_set, ord_nat, Field.Emb.Cardinal.deg_lt_aleph0, gc_ord_card, Ordinal.iSup_ord, Ordinal.ord_cof_eq, ord_one, CategoryTheory.SmallObject.hasIterationOfShape, IsRegular.ord_pos, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, Ordinal.IsFundamentalSequence.ord_cof, CategoryTheory.SmallObject.ฯ€FunctorObj_eq, CategoryTheory.MorphismProperty.llp_rlp_of_hasSmallObjectArgument', mk_ord_toType, Field.Emb.Cardinal.strictMono_filtration, card_ord, ord_injective, CategoryTheory.ObjectProperty.strictLimitsClosureStep_strictLimitsClosureIter_eq_self, OrdinalApprox.exists_lfpApprox_eq_lfpApprox, Field.Emb.Cardinal.iSup_adjoin_eq_top, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropฮนIteration_F, Ordinal.sInf_compl_lt_ord_succ, ord_strictMono, ord_lt_ord, ord_eq, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', Field.Emb.Cardinal.adjoin_image_leastExt, omega0_lt_ord, Ordinal.cof_ord_le, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, CategoryTheory.SmallCategoryCardinalLT.exists_equivalence, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, IsRegular.cof_eq, CategoryTheory.SmallObject.prop_iterationFunctor_map_succ, CategoryTheory.SmallObject.transfiniteCompositionsOfShape_ฮนObj, isNormal_ord, ord_card_le, CategoryTheory.OrthogonalReflection.iteration_map_succ_surjectivity, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, Field.Emb.Cardinal.adjoin_basis_eq_top, ord_le_omega0, CategoryTheory.SmallObject.preservesColimit, Ordinal.exists_blsub_cof, ord_le_type, ord_eq_omega0, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right_assoc, ord_mono, lt_ord, mk_Iio_ord_toType, Ordinal.IsFundamentalSequence.cof_eq
toTypeOrderBot ๐Ÿ“–CompOpโ€”
univ ๐Ÿ“–CompOp
18 mathmath: lift_univ, IsStrongLimit.univ, ord_univ, univ_id, univ_umax, lt_univ, univLE_iff_cardinal_le, lift_lt_univ', univ_pos, IsInaccessible.univ, Ordinal.cof_univ, lift_lt_univ, aleph0_lt_univ, small_iff_lift_mk_lt_univ, mk_cardinal, Ordinal.card_univ, lt_univ', nat_lt_univ

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_lt_univ ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
aleph0
univ
โ€”lift_aleph0
lift_lt_univ'
bddAbove_ord_image_iff ๐Ÿ“–mathematicalโ€”BddAbove
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Set.image
Cardinal
ord
instLE
โ€”GaloisConnection.bddAbove_l_image
gc_ord_card
card_le_iff ๐Ÿ“–mathematicalโ€”Cardinal
instLE
Ordinal.card
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Order.succ
partialOrder
instSuccOrder
โ€”lt_ord
Order.lt_succ_iff
instNoMaxOrder
card_le_of_le_ord ๐Ÿ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Cardinal
instLE
Ordinal.card
โ€”card_ord
Ordinal.card_le_card
card_ord ๐Ÿ“–mathematicalโ€”Ordinal.card
ord
โ€”inductionOn
ord_eq
Ordinal.card_type
card_surjective ๐Ÿ“–mathematicalโ€”Ordinal
Cardinal
Ordinal.card
โ€”card_ord
card_typein_lt ๐Ÿ“–mathematicalord
Ordinal.type
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal.card
DFunLike.coe
RelEmbedding
Ordinal
Ordinal.partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Ordinal.typein
โ€”lt_ord
Ordinal.typein_lt_type
card_typein_toType_lt ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Ordinal.card
DFunLike.coe
RelEmbedding
Ordinal.ToType
ord
Ordinal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
Ordinal.partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Ordinal.typein
isWellOrder_lt
wellFoundedLT_toType
โ€”isWellOrder_lt
wellFoundedLT_toType
lt_ord
Ordinal.typein_lt_self
gc_ord_card ๐Ÿ“–mathematicalโ€”GaloisConnection
Cardinal
Ordinal
PartialOrder.toPreorder
partialOrder
Ordinal.partialOrder
ord
Ordinal.card
โ€”ord_le
isNormal_ord ๐Ÿ“–mathematicalโ€”Order.IsNormal
Cardinal
Ordinal
linearOrder
Ordinal.instLinearOrder
ord
โ€”ord_strictMono
le_of_forall_lt
instNoMaxOrder
Order.IsSuccLimit.succ_lt
lift_lt_univ ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
univ
โ€”lift_ord
lift_succ
instNoMaxOrder
le_of_lt
PrincipalSeg.lt_top
lift_lt_univ' ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
univ
โ€”lift_lt
lift_lt_univ
univ_umax
lift_univ
lift_lift
lift_ord ๐Ÿ“–mathematicalโ€”Ordinal.lift
ord
lift
โ€”le_antisymm
le_of_forall_lt
Ordinal.lt_lift_iff
lt_ord
Ordinal.lift_card
lift_lt
Ordinal.lift_lt
ord_le
card_ord
le_refl
lift_univ ๐Ÿ“–mathematicalโ€”lift
univ
โ€”lift_lift
lt_ord ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Cardinal
partialOrder
Ordinal.card
โ€”GaloisConnection.lt_iff_lt
gc_ord_card
lt_ord_succ_card ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Order.succ
Cardinal
partialOrder
instSuccOrder
Ordinal.card
โ€”lt_ord
Order.lt_succ
instNoMaxOrder
lt_univ ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
univ
lift
โ€”ord_lt_ord
PrincipalSeg.mem_range_of_rel_top
ord_univ
card_ord
Ordinal.lift_card
Ordinal.liftPrincipalSeg_coe
lift_lt_univ
lt_univ' ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
univ
lift
โ€”lt_lift_iff
lt_univ
univ_id
lift_lift
lift_lt_univ'
mk_Iio_ord_toType ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set.Elem
Ordinal.ToType
ord
Set.Iio
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
โ€”card_typein_toType_lt
mk_ord_toType ๐Ÿ“–mathematicalโ€”Ordinal.ToType
ord
โ€”mk_toType
card_ord
mk_toType ๐Ÿ“–mathematicalโ€”Ordinal.ToType
Ordinal.card
โ€”isWellOrder_lt
wellFoundedLT_toType
Ordinal.card_type
Ordinal.type_toType
nat_lt_univ ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instNatCast
univ
โ€”LT.lt.trans
natCast_lt_aleph0
aleph0_lt_univ
omega0_le_ord ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.omega0
ord
Cardinal
instLE
aleph0
โ€”ord_aleph0
ord_le_ord
omega0_lt_ord ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.omega0
ord
Cardinal
partialOrder
aleph0
โ€”le_iff_le_iff_lt_iff_lt
ord_le_omega0
ord_aleph0 ๐Ÿ“–mathematicalโ€”ord
aleph0
Ordinal.omega0
โ€”le_antisymm
ord_le
le_rfl
le_of_forall_lt
Ordinal.lt_lift_iff
lt_ord
Ordinal.lift_card
lift_lt_aleph0
Ordinal.typein_enum
lt_aleph0_iff_fintype
ord_card_le ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Ordinal.card
โ€”GaloisConnection.l_u_le
gc_ord_card
ord_eq ๐Ÿ“–mathematicalโ€”ord
Ordinal.type
โ€”ciInf_mem
Ordinal.wellFoundedLT
IsWellOrder.subtype_nonempty
ord_eq_Inf ๐Ÿ“–mathematicalโ€”ord
iInf
Ordinal
IsWellOrder
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Ordinal.type
โ€”โ€”
ord_eq_omega0 ๐Ÿ“–mathematicalโ€”ord
Ordinal.omega0
aleph0
โ€”ord_injective
ord_aleph0
ord_eq_one ๐Ÿ“–mathematicalโ€”ord
Ordinal
Ordinal.one
Cardinal
instOne
โ€”ord_injective
ord_one
ord_eq_zero ๐Ÿ“–mathematicalโ€”ord
Ordinal
Ordinal.zero
Cardinal
instZero
โ€”ord_injective
ord_zero
ord_inj ๐Ÿ“–mathematicalโ€”ordโ€”ord_injective
ord_injective ๐Ÿ“–mathematicalโ€”Cardinal
Ordinal
ord
โ€”card_ord
ord_le ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Cardinal
instLE
Ordinal.card
โ€”inductionOn
Ordinal.inductionOn
ord_eq
Ordinal.card_le_card
RelEmbedding.isWellOrder
LE.le.trans
ord_le_type
RelEmbedding.ordinal_type_le
ord_le_omega0 ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Ordinal.omega0
Cardinal
instLE
aleph0
โ€”ord_aleph0
ord_le_ord
ord_le_ord ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Cardinal
instLE
โ€”GaloisCoinsertion.l_le_l_iff
ord_le_type ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Ordinal.type
โ€”ciInf_le'
ord_lt_omega0 ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Ordinal.omega0
Cardinal
partialOrder
aleph0
โ€”le_iff_le_iff_lt_iff_lt
omega0_le_ord
ord_lt_ord ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ord
Cardinal
partialOrder
โ€”StrictMono.lt_iff_lt
ord_strictMono
ord_mono ๐Ÿ“–mathematicalโ€”Monotone
Cardinal
Ordinal
PartialOrder.toPreorder
partialOrder
Ordinal.partialOrder
ord
โ€”GaloisConnection.monotone_l
gc_ord_card
ord_nat ๐Ÿ“–mathematicalโ€”ord
Cardinal
instNatCast
Ordinal
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
โ€”LE.le.antisymm
ord_le
Eq.ge
Ordinal.card_nat
zero_le
Ordinal.canonicallyOrderedAdd
LT.lt.succ_le
LE.le.trans_lt
Nat.cast_add
Nat.cast_one
Nat.cast_lt
addLeftMono
IsOrderedRing.toZeroLEOneClass
isOrderedRing
instCharZero
ord_ofNat ๐Ÿ“–mathematicalโ€”ord
Ordinal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
โ€”ord_nat
ord_one ๐Ÿ“–mathematicalโ€”ord
Cardinal
instOne
Ordinal
Ordinal.one
โ€”Nat.cast_one
ord_nat
ord_strictMono ๐Ÿ“–mathematicalโ€”StrictMono
Cardinal
Ordinal
PartialOrder.toPreorder
partialOrder
Ordinal.partialOrder
ord
โ€”GaloisCoinsertion.strictMono_l
ord_univ ๐Ÿ“–mathematicalโ€”ord
univ
Ordinal.univ
โ€”le_antisymm
ord_card_le
le_of_forall_lt
lt_ord
PrincipalSeg.mem_range_of_rel_top
Ordinal.liftPrincipalSeg_coe
Ordinal.lift_card
lift_lt_univ'
ord_zero ๐Ÿ“–mathematicalโ€”ord
Cardinal
instZero
Ordinal
Ordinal.zero
โ€”GaloisConnection.l_bot
gc_ord_card
small_iff_lift_mk_lt_univ ๐Ÿ“–mathematicalโ€”Small
Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
univ
โ€”lt_univ'
lift_mk_eq
mk_out
univ_id ๐Ÿ“–mathematicalโ€”univ
Ordinal
โ€”lift_id
univ_ne_zero ๐Ÿ“–โ€”โ€”โ€”โ€”LT.lt.ne'
univ_pos
univ_pos ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
univ
โ€”LT.lt.trans
aleph0_pos
aleph0_lt_univ
univ_umax ๐Ÿ“–mathematicalโ€”univโ€”lift_umax

Cardinal.IsStrongLimit

Theorems

NameKindAssumesProvesValidatesDepends On
univ ๐Ÿ“–mathematicalโ€”Cardinal.IsStrongLimit
Cardinal.univ
โ€”Cardinal.univ_ne_zero
Nat.instAtLeastTwoHAddOfNat
Cardinal.lt_univ'
Cardinal.lift_power
Cardinal.lift_ofNat

Cardinal.ord

Definitions

NameCategoryTheorems
orderEmbedding ๐Ÿ“–CompOp
1 mathmath: orderEmbedding_coe

Theorems

NameKindAssumesProvesValidatesDepends On
orderEmbedding_coe ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderEmbedding
Cardinal
Ordinal
Cardinal.instLE
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
orderEmbedding
Cardinal.ord
โ€”โ€”

InitialSeg

Theorems

NameKindAssumesProvesValidatesDepends On
ordinal_type_le ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
โ€”โ€”

List.Sorted

Theorems

NameKindAssumesProvesValidatesDepends On
lt_ord_of_lt ๐Ÿ“–โ€”List.SortedGT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Ordinal
Ordinal.partialOrder
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Ordinal.typein
isWellOrder_lt
โ€”โ€”List.SortedGT.lt_ord_of_lt

List.SortedGT

Theorems

NameKindAssumesProvesValidatesDepends On
lt_ord_of_lt ๐Ÿ“–โ€”List.SortedGT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Ordinal
Ordinal.partialOrder
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Ordinal.typein
isWellOrder_lt
โ€”โ€”isWellOrder_lt
List.head_le_of_lt
le_of_lt
lt_of_lt_of_le
pairwise
lt_of_le_of_lt

Ordinal

Definitions

NameCategoryTheorems
ToType ๐Ÿ“–CompOp
81 mathmath: iSup_eq_bsup, iSup_typein_succ, Field.Emb.Cardinal.directed_filtration, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, Field.Emb.Cardinal.filtration_succ, card_iSup_Iio_le_sum_card, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, Field.Emb.Cardinal.two_le_deg, Field.Emb.Cardinal.isLeast_leastExt, enum_le_enum', Field.Emb.Cardinal.succEquiv_coherence, Cardinal.noMaxOrder, CategoryTheory.OrthogonalReflection.iteration_map_succ, CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeColimitsCardinalClosureCategoryFamily, Field.Emb.Cardinal.noMaxOrder_rank_toType, toType_noMax_of_succ_lt, toType_nonempty_iff_ne_zero, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, CategoryTheory.instIsCardinalFilteredToTypeOrd, CategoryTheory.SmallCategoryCardinalLT.hasCardinalLT, Field.Emb.Cardinal.strictMono_leastExt, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasIterationOfShape, sup_eq_bsup, Field.Emb.Cardinal.equivSucc_coherence, CategoryTheory.SmallObject.ฮนFunctorObj_eq, le_enum_succ, Cardinal.card_typein_toType_lt, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, cof_eq_cof_toType, CategoryTheory.OrthogonalReflection.iteration_map_succ_assoc, comp_familyOfBFamily, SetTheory.PGame.rightMoves_nim, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, ToType.mk_symm_apply_coe, Field.Emb.Cardinal.filtration_apply, enum_succ_eq_top, SetTheory.PGame.leftMoves_nim, iSup_typein_limit, Field.Emb.Cardinal.deg_lt_aleph0, toPGame_leftMoves, range_familyOfBFamily, CategoryTheory.SmallObject.hasIterationOfShape, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.ฯ€FunctorObj_eq, CategoryTheory.MorphismProperty.llp_rlp_of_hasSmallObjectArgument', Cardinal.mk_ord_toType, Field.Emb.Cardinal.strictMono_filtration, lsub_typein, enum_zero_eq_bot, isEmpty_toType_zero, Cardinal.mk_toType, typein_lt_self, Field.Emb.Cardinal.iSup_adjoin_eq_top, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropฮนIteration_F, ToType.mk_apply, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', Field.Emb.Cardinal.adjoin_image_leastExt, typein_one_toType, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, CategoryTheory.SmallCategoryCardinalLT.exists_equivalence, sup_typein_limit, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, toType_empty_iff_eq_zero, typein_le_typein', CategoryTheory.SmallObject.prop_iterationFunctor_map_succ, CategoryTheory.SmallObject.transfiniteCompositionsOfShape_ฮนObj, CategoryTheory.OrthogonalReflection.iteration_map_succ_surjectivity, type_toPSet, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, Field.Emb.Cardinal.adjoin_basis_eq_top, lsub_eq_blsub, CategoryTheory.SmallObject.preservesColimit, enum_zero_le', CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right_assoc, familyOfBFamily_enum, type_toType, wellFoundedLT_toType, Cardinal.mk_Iio_ord_toType, sup_typein_succ, one_toType_eq
add ๐Ÿ“–CompOp
106 mathmath: principal_add_omega, add_absorp, add_succ, dvd_add_iff, add_right_cancel, existsAddOfLE, ONote.nf_repr_split', deriv_add_eq_mul_omega0_add, instAddRightMono, add_le_iff_of_isSuccLimit, principal_add_of_le_one, CNF_foldr, Nimber.succ_def, principal_add_ord, lt_mul_div_add, add_log_le_log_mul, nmul_add_one, le_add_left, opow_add, div_add_mod, mul_add_div, isSuccLimit_add_iff_of_isSuccLimit, nfp_mul_opow_omega0_add, one_add_ofNat, nat_nadd, opow_mul_add_pos, NONote.repr_add, NatOrdinal.succ_def, one_add_omega0, iSup_add_nat, isSuccLimit_add_iff, principal_add_iff_add_left_eq_self, one_add_of_omega0_le, ONote.oadd_mul_nfBelow, log_opow_mul, opow_one_add, lt_sub, opow_mul_add_lt_opow, OrdinalApprox.gfpApprox_add_one, le_sub_of_le, cof_add, lt_add_iff, ONote.repr_add, lt_add_iff_of_isSuccLimit, iSup_add_natCast, add_sub_cancel, sub_lt_of_le, card_add, add_eq_zero_iff, mul_succ, instAddLeftReflectLT, opow_mul_add_lt_opow_mul, sub_le, instAddLeftStrictMono, principal_add_iff_zero_or_omega0_opow, OrdinalApprox.lfpApprox_add_one, principal_add_iff_add_lt_ne_self, principal_add_of_principal_mul, natCast_add_of_omega0_le, one_add_natCast, ONote.repr_opow_auxโ‚, log_opow_mul_add, lift_add, add_eq_right_iff_mul_omega0_le, mul_add_div_mul, ONote.split_add_lt, add_le_nadd, nfp_add_eq_mul_omega0, mul_add_mod_self, opow_mul_add_lt_opow_succ, leftDistribClass, CNF.foldr, principal_add_one, nadd_nat, principal_add_omega0, isSuccLimit_add, instAddLeftReflectLE, add_omega0, add_sub_cancel_of_le, type_sum_lex, IsInitial.principal_add, Cardinal.beth_eq_preBeth, add_omega0_opow, principal_add_of_principal_mul_opow, mul_add_mod_mul, add_sub_add_cancel, canonicallyOrderedAdd, Cardinal.aleph_eq_preAleph, le_add_right, add_le_iff, isNormal_add_right, principal_add_omega0_opow, instAddLeftMono, add_one_eq_succ, add_le_add_iff_right, opow_mul_add_lt_opow_mul_succ, nfp_add_zero, add_le_right_iff_mul_omega0_le, instAddRightReflectLT, ONote.nf_repr_split, instIsLeftCancelAdd, natCast_add_omega0, sub_sub, le_add_sub, add_one_nmul, omega_eq_preOmega
addMonoidWithOne ๐Ÿ“–CompOp
78 mathmath: lt_omega0_opow_succ, ONote.repr_one, card_le_ofNat, add_right_cancel, ONote.nf_repr_split', succ_one, SetTheory.Game.birthday_natCast, Cardinal.preAleph_nat, one_add_ofNat, nat_nadd, natCast_mul_omega0, natCast_sub, iSup_add_nat, nat_le_card, natCast_opow, smul_eq_mul, eq_nat_or_omega0_le, nat_lt_card, iSup_mul_nat, natCast_mod, omega0_le, iSup_add_natCast, Nimber.add_nat, card_lt_nat, preOmega_ofNat, Cardinal.ord_ofNat, natCast_add_of_omega0_le, one_add_natCast, NatOrdinal.toOrdinal_natCast, ONote.repr_opow_auxโ‚, iSup_mul_natCast, lift_natCast, natCast_pow, natCast_mul, natCast_succ, ONote.split_add_lt, natCast_opow_omega0, card_le_nat, type_fintype, toPGame_natCast, SetTheory.PGame.birthday_half, lt_omega0_opow, Cardinal.ord_nat, ofNat_lt_card, ofNat_le_card, card_eq_nat, principal_mul_two, opow_natCast, SetTheory.Game.birthday_ofNat, nadd_nat, isInitial_natCast, natCast_mod_omega0, IsNormal.apply_omega0, omega0_opow_mul_nat_lt, nat_lt_omega0, toNatOrdinal_natCast, card_nat, ONote.repr_ofNat, SetTheory.PGame.birthday_natCast, lt_omega0, add_le_add_iff_right, card_lt_ofNat, iSup_natCast, lift_ofNat, natCast_lt_epsilon, apply_omega0_of_isNormal, preOmega_natCast, ONote.nf_repr_split, Cardinal.preBeth_nat, natCast_lt_of_isSuccLimit, natCast_add_omega0, natCast_lt_gamma, toGame_natCast, type_fin, principal_mul_iff_le_two_or_omega0_opow_opow, instCharZero, natCast_div, card_eq_ofNat
card ๐Ÿ“–CompOp
77 mathmath: Cardinal.lt_ord_succ_card, lift_card_iSup_le_sum_card, cof_blsub_le, card_le_ofNat, isInitialIso_apply, card_le_aleph, card_iSup_Iio_le_sum_card, card_one, card_zero, card_omega0, card_le_card, card_sInf_range_compl_le_lift, cof_blsub_le_lift, card_le_preAleph, card_omega0_opow, card_sInf_range_compl_le, Cardinal.card_le_iff, nat_le_card, Cardinal.lt_omega_iff_card_lt, card_le_one, IsInitial.card_lt_card, nat_lt_card, IsInitial.ord_card, card_eq_zero, cof_le_card, card_toZFSet, le_cof_iff_blsub, card_le_preBeth, card_iSup_Iio_le_card_mul_iSup, card_lt_nat, one_lt_card, Cardinal.ord_le, card_ofNat, card_add, Cardinal.card_typein_lt, Cardinal.card_typein_toType_lt, card_opow_le_of_omega0_le_right, card_opow_omega0, aleph0_le_card, mk_Iio_ordinal, card_le_nat, ofNat_lt_card, Cardinal.gc_ord_card, card_le_beth, card_succ, card_omega, card_typein, ofNat_le_card, card_opow_eq_of_omega0_le_right, card_type, zero_lt_card, IsInitial.card_le_card, card_eq_nat, card_eq_one, lift_card_sInf_compl_le, Cardinal.card_ord, card_mul, Cardinal.mk_toType, card_opow_le_of_omega0_le_left, card_opow_eq_of_omega0_le_left, card_preOmega, Cardinal.card_surjective, card_nat, card_le_card_vonNeumann, Cardinal.card_le_of_le_ord, card_lt_aleph0, cof_bsup_le_lift, card_lt_ofNat, Cardinal.ord_card_le, lift_card, card_univ, card_opow_le, cof_bsup_le, Cardinal.lt_ord, one_le_card, card_iSup_le_sum_card, card_eq_ofNat
enum ๐Ÿ“–CompOp
19 mathmath: enum_symm_apply_coe, enum_zero_le, enum_lt_enum, enum_le_enum', le_enum_succ, enum_typein, typein_enum, enum_succ_eq_top, enum_le_enum, enum_zero_eq_bot, relIso_enum', ToType.mk_apply, enum_inj, familyOfBFamily'_enum, enum_zero_le', familyOfBFamily_enum, relIso_enum, enum_type, one_toType_eq
enumIsoToType ๐Ÿ“–CompOpโ€”
inhabited ๐Ÿ“–CompOpโ€”
initialSegToType ๐Ÿ“–CompOpโ€”
instCoeOutToType ๐Ÿ“–CompOpโ€”
instCoeToTypeElemIio ๐Ÿ“–CompOpโ€”
instConditionallyCompleteLinearOrderBot ๐Ÿ“–CompOp
113 mathmath: iSup_eq_iSup, iSup_eq_bsup, lift_card_iSup_le_sum_card, Acc.rank_eq, iSup_pow_natCast, sup_eq_lsub_iff_lt_sup, sInf_compl_lt_lift_ord_succ, max_zero_left, sup_eq_lsub_iff_succ, iSup_typein_succ, log_def, sup_succ_le_lsub, iSup_le_lsub, card_iSup_Iio_le_sum_card, NatOrdinal.toOrdinal_min, toNimber_min, card_sInf_range_compl_le_lift, Nimber.toOrdinal_max, iSup_le, Principal.sSup, Nimber.toOrdinal_min, iSup_pow, deriv_limit, card_sInf_range_compl_le, sSup_eq_bsup, Cardinal.aleph_add_aleph, iSup_add_nat, toNatOrdinal_min, iSup_sum, PSet.rank_insert, iSup_eq_lsub_or_succ_iSup_eq_lsub, sup_succ_eq_lsub, succ_log_def, sSup_ord, NatOrdinal.toOrdinal_max, enumOrd_zero, iSup_mul_nat, sup_le_lsub, iSup_add_natCast, IsNormal.map_iSup, card_iSup_Iio_le_card_mul_iSup, sup_eq_bsup, Principal.iSup, Cardinal.ord_eq_Inf, opow_limit, max_eq_zero, bsup_eq_sup, iSup_mul_natCast, mem_closure_iff_iSup, iSup_lt_ord_lift, Cardinal.aleph_max, Cardinal.preAleph_max, mem_closure_tfae, Cardinal.iSup_lt_ord_lift_of_isRegular, iSup'_eq_bsup, iSup_sequence_lt_omega_one, SetTheory.PGame.birthday_def, IsWellFounded.rank_eq, iSup_typein_limit, derivFamily_limit, ZFSet.rank_range, iSup_ord, ZFSet.rank_insert, sup_eq_sup, le_iSup, iSup_eq_zero_iff, sup_eq_bsup', succ_iSup_eq_lsub_iff, sup_eq_lsub, lift_card_sInf_compl_le, iSup_eq_lsub_iff_lt_iSup, IsNormal.map_iSup_of_bddAbove, lt_iSup_iff, Cardinal.aleph_mul_aleph, IsNormal.map_sSup_of_bddAbove, bsup'_eq_iSup, IsNormal.apply_omega0, iSup_Iio_eq_bsup, iSup_eq_of_range_eq, ZFSet.rank_iUnion, IsNormal.map_sSup, iSup_sequence_lt_omega1, bsup_eq_iSup, lsub_le_succ_iSup, mem_iff_iSup_of_isClosed, sInf_compl_lt_ord_succ, isClosed_iff_iSup, bsup_eq_sup', toNimber_max, sup_typein_limit, omega_max, sup_eq_lsub_or_sup_succ_eq_lsub, ZFSet.rank_pair, iSup_le_iff, Cardinal.iSup_lt_ord_of_isRegular, iSup_eq_lsub, max_zero_right, iSup_eq_lsub_iff, iSup_natCast, iSup_iterate_eq_nfp, apply_omega0_of_isNormal, lsub_le_sup_succ, succ_iSup_le_lsub_iff, IsNormal.apply_of_isSuccLimit, lsub_sum, iSup_lt_ord, ZFSet.rank_union, preOmega_max, card_iSup_le_sum_card, toNatOrdinal_max, PSet.rank_pair, sInf_empty, sup_typein_succ
instLinearOrder ๐Ÿ“–CompOp
61 mathmath: Profinite.NobelingProof.GoodProducts.sum_to_range, isNormal_mul_right, Profinite.NobelingProof.injective_ฯ€s', Profinite.NobelingProof.coe_ฯ€s, liftPrincipalSeg_top', Profinite.NobelingProof.Products.limitOrdinal, Profinite.NobelingProof.Products.eval_ฯ€s, Cardinal.isNormal_preAleph, Profinite.NobelingProof.Products.eval_ฯ€s', Profinite.NobelingProof.GoodProducts.span_sum, Profinite.NobelingProof.succ_exact, Profinite.NobelingProof.GoodProducts.smaller_factorization, Profinite.NobelingProof.ฯ€s'_apply_apply, isNormal_veblen, isNormal_iff_lt_succ_and_bsup_eq, Profinite.NobelingProof.contained_eq_proj, Profinite.NobelingProof.GoodProducts.injective_sum_to, Profinite.NobelingProof.GoodProducts.good_lt_maxProducts, Profinite.NobelingProof.GoodProducts.union_succ, Profinite.NobelingProof.Products.eval_ฯ€s_image', isNormal_preOmega, isNormal_opow, isNormal_deriv, Cardinal.isNormal_aleph, cmp_veblen, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_smaller, isNormal_enumOrd, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_sum, isNormal_iff_lt_succ_and_blsub_eq, CategoryTheory.ObjectProperty.isoClosure_strictLimitsClosureIter_eq_limitsClosure, isNormal_veblen_zero, Profinite.NobelingProof.C0_projOrd, Profinite.NobelingProof.C1_projOrd, Profinite.NobelingProof.ฯ€s_apply_apply, isNormal_derivFamily, Profinite.NobelingProof.GoodProducts.square_commutes, isNormal_gamma, Profinite.NobelingProof.contained_C1, Profinite.NobelingProof.isClosed_proj, typein_ordinal, Profinite.NobelingProof.swapTrue_mem_C1, univ_id, Profinite.NobelingProof.contained_proj, CategoryTheory.ObjectProperty.strictLimitsClosureStep_strictLimitsClosureIter_eq_self, enumOrd_isNormal_iff_isClosed, isNormal_veblenWith', Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim, Profinite.NobelingProof.CC_comp_zero, Profinite.NobelingProof.CC_exact, Cardinal.isNormal_beth, isNormal_add_right, Profinite.NobelingProof.injective_ฯ€s, Profinite.NobelingProof.coe_ฯ€s', Profinite.NobelingProof.GoodProducts.range_equiv_smaller_toFun_bijective, Cardinal.isNormal_preBeth, Cardinal.isNormal_ord, Profinite.NobelingProof.Products.eval_ฯ€s_image, IsNormal.trans, isNormal_iff_strictMono_and_continuous, isNormal_omega, Profinite.NobelingProof.succ_mono
instOrderBot ๐Ÿ“–CompOp
2 mathmath: bot_eq_zero, boundedLimitRec_zero
instSuccAddOrder ๐Ÿ“–CompOpโ€”
instSuccOrder ๐Ÿ“–CompOp
109 mathmath: succ_nmul, lt_omega0_opow_succ, boundedLimitRec_succ, Acc.rank_eq, pred_succ, add_succ, sup_eq_lsub_iff_succ, Cardinal.aleph_succ, iSup_typein_succ, succ_one, bsup_id_succ, sup_succ_le_lsub, PSet.le_succ_rank_sUnion, div_le, cof_eq_one_iff_is_succ, lt_mul_succ_div, nfp_mul_opow_omega0_add, one_add_ofNat, deriv_succ, succ_zero, bsup_succ_eq_blsub, lsub_const, nmul_succ, pred_le_iff_le_succ, Cardinal.beth_succ, PSet.rank_insert, lift_succ, iSup_eq_lsub_or_succ_iSup_eq_lsub, sup_succ_eq_lsub, succ_log_def, ZFSet.rank_powerset, derivFamily_succ, isNormal_iff_lt_succ_and_bsup_eq, lt_opow_succ_log_self, bsup_eq_blsub_iff_succ, zero_or_succ_or_isSuccLimit, cof_succ, Cardinal.isRegular_aleph_succ, le_enum_succ, mul_succ, limitRecOn_succ, epsilon_succ_eq_nfp, lt_div, isNormal_iff_lt_succ_and_blsub_eq, CategoryTheory.ObjectProperty.isoClosure_strictLimitsClosureIter_eq_limitsClosure, isInitial_succ, natCast_succ, bsup_eq_blsub_or_succ_bsup_eq_blsub, one_nadd, mul_eq_opow_log_succ, opow_mul_add_lt_opow_succ, Cardinal.preAleph_succ, enum_succ_eq_top, IsNormal.eq_iff_zero_and_succ, PSet.rank_powerset, Cardinal.preBeth_succ, IsWellFounded.rank_eq, log_eq_iff, bsup_succ_of_mono, ZFSet.rank_range, enumOrd_succ_le, ZFSet.rank_insert, card_succ, PSet.rank_singleton, bsup_succ_le_blsub, succ_iSup_eq_lsub_iff, lt_pred_iff_succ_lt, ONote.fundamentalSequenceProp_inl_some, sup_eq_lsub, blsub_succ_of_mono, veblenWith_succ, ZFSet.mem_vonNeumann_succ, IsFundamentalSequence.succ, nadd_succ, CategoryTheory.ObjectProperty.strictLimitsClosureStep_strictLimitsClosureIter_eq_self, lsub_le_succ_iSup, bsup_eq_blsub, add_mul_succ, blsub_const, bsup_not_succ_of_ne_bsup, blsub_one, succ_pos, ONote.repr_opow_auxโ‚‚, succ_pred_eq_iff_not_isSuccPrelimit, sup_eq_lsub_or_sup_succ_eq_lsub, veblen_succ, opow_succ, add_one_eq_succ, ZFSet.rank_pair, opow_mul_add_lt_opow_mul_succ, toZFSet_succ, opow_lt_opow_left_of_succ, iSup_eq_lsub, iSup_eq_lsub_iff, ZFSet.rank_singleton, self_le_succ_pred, blsub_le_bsup_succ, lsub_unique, lsub_le_sup_succ, ZFSet.vonNeumann_succ, succ_iSup_le_lsub_iff, succ_nadd, nadd_one, ZFSet.le_succ_rank_sUnion, PSet.rank_pair, gamma_succ_eq_nfp, sup_typein_succ, Cardinal.isRegular_preAleph_succ, succ_lt_iSup_of_ne_iSup
instSuccOrderToType ๐Ÿ“–CompOp
19 mathmath: CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, CategoryTheory.OrthogonalReflection.iteration_map_succ, CategoryTheory.SmallObject.ฮนFunctorObj_eq, CategoryTheory.OrthogonalReflection.iteration_map_succ_assoc, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.OrthogonalReflection.iteration_map_succ_injectivity, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.ฯ€FunctorObj_eq, CategoryTheory.MorphismProperty.llp_rlp_of_hasSmallObjectArgument', CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropฮนIteration_F, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.SmallObject.prop_iterationFunctor_map_succ, CategoryTheory.SmallObject.transfiniteCompositionsOfShape_ฮนObj, CategoryTheory.OrthogonalReflection.iteration_map_succ_surjectivity, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right_assoc
isEquivalent ๐Ÿ“–CompOp
1 mathmath: relIso_enum
liftInitialSeg ๐Ÿ“–CompOp
1 mathmath: liftInitialSeg_coe
liftOnWellOrder ๐Ÿ“–CompOp
1 mathmath: liftOnWellOrder_type
liftPrincipalSeg ๐Ÿ“–CompOp
3 mathmath: liftPrincipalSeg_top', liftPrincipalSeg_coe, liftPrincipalSeg_top
omega0 ๐Ÿ“–CompOp
106 mathmath: Cardinal.preBeth_omega, lt_omega0_opow_succ, iSup_pow_natCast, invVeblenโ‚‚_eq_iff, ONote.nf_repr_split', omega0_lt_omega_one, le_invVeblenโ‚‚_iff, deriv_add_eq_mul_omega0_add, omega0_lt_preOmega_iff, omega_zero, Cardinal.ord_aleph0, isSuccLimit_omega0, epsilon_eq_deriv, card_omega0, range_omega, principal_mul_omega0, principal_opow_omega0, invVeblenโ‚‚_le_iff, card_omega0_opow, natCast_mul_omega0, iSup_pow, ONote.split_dvd, omega0_pos, eq_zero_or_opow_omega0_le_of_mul_eq_right, SetTheory.PGame.short_birthday, one_add_omega0, iSup_add_nat, Cardinal.preAleph_omega0, mem_range_omega_iff, veblen_opow_eq_opow_iff, eq_nat_or_omega0_le, iSup_mul_nat, lt_epsilon_zero, iterate_omega0_opow_lt_epsilon0, ONote.repr_scale, omega0_le, iSup_add_natCast, veblen_zero, isInitial_omega0, mul_eq_right_iff_opow_omega0_dvd, ONote.omega0_le_oadd, Cardinal.omega0_le_ord, principal_add_iff_zero_or_omega0_opow, epsilon_succ_eq_nfp, Cardinal.ord_lt_omega0, iSup_mul_natCast, omega0_lt_omega1, card_opow_omega0, aleph0_le_card, isInitial_succ, mem_range_veblen_iff_le_invVeblenโ‚, add_eq_right_iff_mul_omega0_le, omega0_le_omega, ONote.split_add_lt, natCast_opow_omega0, Cardinal.aleph0_le_preAleph, veblen_invVeblenโ‚_invVeblenโ‚‚, lt_omega0_opow, omega0_lt_epsilon, epsilon0_eq_nfp, epsilon_zero_eq_nfp, veblen_mem_range_opow, omega0_le_preOmega_iff, omega0_lt_gamma, deriv_mul_eq_opow_omega0_mul, opow_lt_veblen_opow_iff, principal_add_omega0, natCast_mod_omega0, mul_le_right_iff_opow_omega0_dvd, IsNormal.apply_omega0, type_nat_lt, principal_mul_omega0_opow_opow, omega0_opow_mul_nat_lt, nat_lt_omega0, invVeblenโ‚‚_lt_iff, Cardinal.beth_eq_preBeth, lift_omega0, Cardinal.omega0_lt_ord, Cardinal.aleph_eq_preAleph, invVeblenโ‚‚_lt, lt_omega0, lt_invVeblenโ‚‚_iff, veblen_eq_opow_iff, principal_add_omega0_opow, nfp_mul_one, veblen_zero_apply, card_lt_aleph0, omega0_le_of_isSuccLimit, nfp_add_zero, preOmega_omega0, ONote.scale_opowAux, iSup_natCast, add_le_right_iff_mul_omega0_le, iterate_omega0_opow_lt_epsilon_zero, Cardinal.ord_le_omega0, apply_omega0_of_isNormal, Cardinal.ord_eq_omega0, cof_omega0, natCast_add_omega0, one_lt_omega0, isSuccLimit_iff_omega0_dvd, ONote.NFBelow.repr_lt, principal_mul_iff_le_two_or_omega0_opow_opow, lt_epsilon0, omega0_opow_epsilon, omega_eq_preOmega
one ๐Ÿ“–CompOp
115 mathmath: SetTheory.PGame.default_nim_one_rightMoves_eq, opow_one, lift_one, Iio_one_default_eq, one_nmul, omega0_lt_omega_one, nadd_one_nmul, toNatOrdinal_eq_one, succ_one, Cardinal.lift_eq_aleph_one, SetTheory.PGame.birthday_one, card_one, Nimber.succ_def, one_toPGame_leftMoves_default_eq, toGame_one, nmul_add_one, one_add_ofNat, log_one_left, SetTheory.PGame.nim_one_equiv, div_self, Cardinal.aleph_one_le_continuum, NatOrdinal.succ_def, nmul_nadd_one, succ_zero, SetTheory.PGame.toRightMovesNim_one_symm, Cardinal.preBeth_one, zero_opow', one_add_omega0, instZeroLEOneClass, lt_one_iff_zero, SetTheory.Game.birthday_one, one_add_of_omega0_le, opow_one_add, Cardinal.aleph1_le_lift, card_le_one, toPGame_one, OrdinalApprox.gfpApprox_add_one, SetTheory.PGame.birthday_star, cardinalInterFilter_aleph_one_iff, isInitial_one, Cardinal.ord_eq_one, mod_one, Cardinal.beth_one, toNatOrdinal_one, bsup_one, SetTheory.PGame.nim_one_moveLeft, one_lt_card, SetTheory.PGame.default_nim_one_leftMoves_eq, one_opow, Cardinal.aleph1_lt_lift, type_eq_one_iff_unique, one_toPGame_moveLeft, Cardinal.lift_eq_aleph1, zero_opow_le, OrdinalApprox.lfpApprox_add_one, one_add_natCast, toNimber_one, omega0_lt_omega1, Nimber.toOrdinal_eq_one, one_nadd, Nimber.toOrdinal_one, Cardinal.aleph_one_le_lift, principal_one_iff, Cardinal.lift_le_aleph1, CNF.coeff_one_left, Cardinal.ord_one, type_pUnit, principal_add_one, CNF.one_left, card_eq_one, Cardinal.aleph0_lt_aleph_one, opow_zero, nmul_one, Cardinal.isRegular_aleph_one, IsFundamentalSequence.succ, Cardinal.lift_le_aleph_one, one_le_iff_ne_zero, type_unit, SetTheory.Game.birthday_star, one_lt_of_isSuccLimit, type_eq_one_of_unique, Cardinal.aleph1_eq_lift, NatOrdinal.toOrdinal_one, MeasurableSpace.generateMeasurableRec_omega_one, blsub_one, SetTheory.PGame.nim_one_moveRight, typein_one_toType, toNimber_eq_one, to_leftMoves_one_toPGame_symm, CountableInterFilter.toCardinalInterFilter, Cardinal.aleph_one_eq_lift, Cardinal.countable_iff_lt_aleph_one, nfp_mul_one, add_one_eq_succ, MeasurableSpace.generateMeasurableRec_omega1, one_CNF, Cardinal.lift_lt_aleph1, Cardinal.aleph_one_lt_lift, le_one_iff, invVeblenโ‚_epsilon, NatOrdinal.toOrdinal_eq_one, principal_mul_one, one_lt_omega0, one_le_card, nadd_one, Cardinal.succ_aleph0, add_one_nmul, div_one, Cardinal.lift_lt_aleph_one, ONote.nfBelow_ofNat, instNeZeroOne, SetTheory.PGame.toLeftMovesNim_one_symm, one_toType_eq, MeasurableSpace.generateMeasurable_eq_rec, log_one_right
partialOrder ๐Ÿ“–CompOp
687 mathmath: Cardinal.lt_ord_succ_card, isSuccLimit_lift, PSet.rank_le_iff, succ_nmul, Cardinal.aleph_le_beth, veblenWith_le_veblenWith_iff_right, lt_omega0_opow_succ, toNimber_eq_zero, isNormal_iff_strictMono_limit, Cardinal.mk_iUnion_Ordinal_le_of_le, principal_add_omega, SetTheory.PGame.default_nim_one_rightMoves_eq, Acc.rank_eq, toPGame_lf_iff, sup_eq_lsub_iff_lt_sup, ZFSet.IsOrdinal.rank_le_iff_subset, SetTheory.Game.birthday_add_le, ZFSet.subset_vonNeumann, lift_type_lt, sInf_compl_lt_lift_ord_succ, typein_le_typein, pred_succ, mem_range_typein_iff, IsAcc.isSuccLimit, gamma_le_gamma, add_succ, Cardinal.isStrongLimit_preBeth, card_le_ofNat, Iio_one_default_eq, lsub_pos, nmul_le_iffโ‚ƒ, sup_eq_lsub_iff_succ, Cardinal.aleph_succ, isInitialIso_apply, not_bddAbove_fp_family, blsub_congr, Cardinal.aleph_pos, liftInitialSeg_coe, iSup_typein_succ, existsAddOfLE, mul_le_nmul, blsub_le_iff, Cardinal.isSuccLimit_ord, omega_lt_omega, omega0_lt_omega_one, le_invVeblenโ‚‚_iff, toNatOrdinal_eq_one, type_lt_iff, IsNormal.apply_le_nfp, succ_one, sub_eq_zero_iff_le, Cardinal.ord.orderEmbedding_coe, omega0_lt_preOmega_iff, mulRightMono, instAddRightMono, Profinite.NobelingProof.coe_ฯ€s, lift_lt, SetTheory.Game.birthday_sub_le, ZFSet.lt_rank_iff, apply_le_nfp, mod_le, Cardinal.lift_eq_aleph_one, SetTheory.PGame.grundyValue_eq_iff_equiv_nim, not_lt_zero, card_le_aleph, isAcc_iff, omega_zero, toNimber_symm_eq, bsup_id_succ, liftPrincipalSeg_top', sup_succ_le_lsub, iSup_le_lsub, card_iSup_Iio_le_sum_card, isOpen_singleton_iff, NatOrdinal.toOrdinal_min, enum_symm_apply_coe, toGame_lt_iff, IsNormal.lt_iff, SetTheory.PGame.grundyValue_nim_add_nim, Nimber.succ_def, deriv_strictMono, enum_zero_le, PSet.le_succ_rank_sUnion, lt_mul_div_add, omega_le_omega, IsNormal.nfp_le_apply, enum_lt_enum, isSuccLimit_omega0, isInitialIso_symm_apply_coe, isInitial_preOmega, add_log_le_log_mul, Cardinal.isNormal_preAleph, Cardinal.bddAbove_ord_image_iff, SetTheory.PGame.birthday_moveLeft_lt, epsilon_zero_lt_gamma, div_le, one_toPGame_leftMoves_default_eq, toGame_one, Cardinal.preAleph_nat, PSet.rank_mono, toNimber_min, Mathlib.Meta.NormNum.isNat_ordinalLT_true, le_add_left, pred_le_self, cof_eq_one_iff_is_succ, ZFSet.vonNeumann_subset_vonNeumann_iff, div_lt, range_omega, not_bddAbove_isInitial, lt_mul_succ_div, div_opow_log_pos, one_add_ofNat, nadd_le_nadd_iff_right, isOpen_iff, Nimber.toOrdinal_max, le_iff_derivFamily, Cardinal.preAleph_le_aleph, CNF.sorted, type_le_iff, opow_mul_add_pos, log_le_self, coe_toZFSet, typein_top, Nimber.toOrdinal_min, invVeblenโ‚‚_le_iff, enum_le_enum', apply_lt_nfpFamily_iff, deriv_succ, bfamilyOfFamily'_typein, invVeblenโ‚_le, Cardinal.aleph_one_le_continuum, WellFoundedGT.rank_strictAnti, NatOrdinal.succ_def, veblenWith_right_strictMono, nadd_le_nadd_iff_left, succ_zero, card_le_preAleph, Cardinal.aleph_mul_aleph0, SetTheory.PGame.toRightMovesNim_one_symm, Profinite.NobelingProof.GoodProducts.smaller_factorization, lt_nfpFamily_iff, omega0_pos, not_bddAbove_principal, eq_zero_or_opow_omega0_le_of_mul_eq_right, Cardinal.card_le_iff, SetTheory.PGame.short_birthday, liftPrincipalSeg_coe, NatOrdinal.bot_eq_zero, Besicovitch.TauPackage.monotone_iUnionUpTo, bsup_succ_eq_blsub, opow_log_le_self, Cardinal.aleph_add_aleph, le_nadd_self, instZeroLEOneClass, lsub_const, lt_one_iff_zero, nmul_succ, toNatOrdinal_min, isSuccLimit_add_iff, Cardinal.preAleph_omega0, lt_gamma0, foldr_le_nfpFamily, bot_eq_zero, PSet.rank_lt_of_mem, pred_le_iff_le_succ, Cardinal.beth_succ, mem_range_omega_iff, nat_le_card, mem_toZFSet_iff, SetTheory.PGame.lt_birthday_iff, ZFSet.rank_mono, Acc.rank_lt_of_rel, Cardinal.lt_omega_iff_card_lt, ONote.lt_def, veblen_zero_lt_veblen_zero, Cardinal.le_preAleph_ord, Cardinal.aleph1_le_lift, typein_lt_type, apply_lt_nfp, PSet.rank_insert, toZFSet_strictMono, card_le_one, lt_sub, lift_succ, veblen_of_ne_zero, iSup_eq_lsub_or_succ_iSup_eq_lsub, sup_succ_eq_lsub, type_le_iff', Cardinal.le_aleph_ord, ONote.NFBelow.lt, IsInitial.card_lt_card, NatOrdinal.toOrdinal_max, typein_lt_typein, eq_nat_or_omega0_le, iterate_veblen_lt_gamma0, cardinalInterFilter_aleph_one_iff, nat_lt_card, IsWellFounded.rank_lt_of_rel, ZFSet.rank_powerset, lt_nmul_iffโ‚ƒ, lt_epsilon_zero, le_zero, iterate_omega0_opow_lt_epsilon0, lt_nmul_iff, instPosMulStrictMono, derivFamily_succ, le_self_nadd, IsNormal.id_le, isNormal_iff_lt_succ_and_bsup_eq, Cardinal.aleph_le_aleph, IsNormal.le_apply, lt_add_iff, SetTheory.Game.birthday_ordinalToGame, Profinite.NobelingProof.contained_eq_proj, SetTheory.Game.le_birthday, iterate_le_nfp, IsWellFounded.rank_eq_typein, PSet.rank_sUnion_le, isSuccPrelimit_zero, CNF_sorted, IsNormal.apply_lt_nfp, le_nfp, omega0_le, bsup_eq_blsub_iff_succ, SetTheory.PGame.moveRight_nim, toNatOrdinal_one, sup_le_lsub, bsup_one, Cardinal.beth_le_beth, IsNormal.le_iff, mod_lt, PrincipalSeg.ordinal_type_lt, not_bddAbove_fp, card_iSup_Iio_le_card_mul_iSup, zero_or_succ_or_isSuccLimit, nfp_le_iff, Cardinal.ord_aleph, small_Iic, Nimber.add_nat, nfp_le_apply, wellFoundedLT, veblenWith_lt_veblenWith_iff, card_lt_nat, ZFSet.mem_vonNeumann', derivFamily_strictMono, blsub_le_of_brange_subset, ZFSet.vonNeumann_mem_vonNeumann_iff, one_lt_card, lt_blsub_iff, Cardinal.ord_le, isNormal_preOmega, preOmega_ofNat, SetTheory.PGame.default_nim_one_leftMoves_eq, preOmega_le_omega, cof_succ, ZFSet.vonNeumann_strictMono, type_subrel, Cardinal.isRegular_aleph_succ, Cardinal.ord_le_ord, Cardinal.beth_mono, gamma_pos, lt_lift_iff, OrdinalApprox.lfpApprox_monotone, principal_mul_omega, Cardinal.aleph1_lt_lift, le_enum_succ, OrdinalApprox.gfpApprox_antitone, mem_toPSet_iff, Cardinal.isNormal_aleph, mul_succ, cmp_veblen, ONote.omega0_le_oadd, Cardinal.omega0_le_ord, enum_typein, instAddLeftReflectLT, limitRecOn_succ, sub_le, instAddLeftStrictMono, Cardinal.card_typein_lt, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_smaller, Cardinal.card_typein_toType_lt, blsub_type, Cardinal.lift_eq_aleph1, zero_opow_le, instOrderTopology, bddAbove_range, NatOrdinal.toOrdinal_natCast, SetTheory.PGame.equiv_nim_grundyValue, Mathlib.Meta.NormNum.isNat_ordinalLT_false, epsilon_succ_eq_nfp, Cardinal.preBeth_lt_preBeth, lt_div, ONote.le_def, veblenWith_lt_veblenWith_iff_right, Cardinal.ord_lt_omega0, not_principal_iff, IsNormal.monotone, Cardinal.aleph_max, toNimber_one, Cardinal.ord_preAleph, omega0_lt_omega1, bfamilyOfFamily_typein, pred_lt_iff_not_isSuccPrelimit, mk_toPGame, isNormal_iff_lt_succ_and_blsub_eq, Cardinal.isStrongLimit_beth, preOmega_zero, aleph0_le_card, isInitial_succ, natCast_succ, coe_preOmega, veblen_zero_le_veblen_zero, Cardinal.preAleph_max, typein_injective, ord_cof_le, Cardinal.preBeth_le_preBeth, toZFSetIso_apply, Nimber.toOrdinal_eq_one, bsup_le_of_brange_subset, nadd_le_iff, mem_range_veblen_iff_le_invVeblenโ‚, add_eq_right_iff_mul_omega0_le, omega0_le_omega, mem_closure_tfae, bsup_eq_blsub_or_succ_bsup_eq_blsub, ONote.split_add_lt, not_isSuccLimit_zero, toGame_zero, isSuccLimit_iff, veblen_eq_veblen_iff, add_le_nadd, pred_eq_iff_isSuccPrelimit, mod_opow_log_lt_self, mk_Iio_ordinal, bddAbove_of_small, Profinite.NobelingProof.ฯ€s_apply_apply, card_le_nat, typein_apply, lsub_le_of_range_subset, one_nadd, ToType.mk_symm_apply_coe, Cardinal.range_aleph, bddAbove_iff_small, Cardinal.aleph0_le_preAleph, Cardinal.preAleph_succ, strictMono_gamma, enum_succ_eq_top, Nimber.toOrdinal_one, iterate_veblen_lt_gamma_zero, typein_surjOn, lt_omega0_opow, Cardinal.aleph_one_le_lift, IsNormal.eq_iff_zero_and_succ, OrdinalApprox.exists_gfpApprox_eq_gfpApprox, PSet.rank_powerset, isInitial_omega, epsilon0_lt_gamma, omega0_lt_epsilon, Cardinal.preBeth_succ, Mathlib.Meta.NormNum.isNat_ordinalLE_true, IsWellFounded.rank_eq, Cardinal.not_injective_limitation_set, veblen_le_veblen_iff, bsup_congr, eq_zero_or_pos, small_Icc, veblen_le_veblen_iff_right, ofNat_lt_card, Cardinal.lift_le_aleph1, Cardinal.gc_ord_card, ZFSet.rank_range, toGame_nmul, bsup_eq_blsub_iff_lt_bsup, le_preOmega_self, isSuccPrelimit_lift, WellFoundedLT.rank_strictMono, ZFSet.rank_insert, toGame_lf_iff, enum_le_enum, Cardinal.preAleph_zero, lsub_le_iff, lt_wf, card_succ, sub_le_self, aleph0_le_cof, le_iSup, card_omega, Profinite.NobelingProof.isClosed_proj, card_typein, lift_typein_top, Cardinal.IsRegular.ord_pos, typein_ordinal, apply_le_nfpFamily, Cardinal.lift_aleph, toNatOrdinal_zero, div_pos, PSet.rank_singleton, exists_lt_add_of_not_principal_add, ofNat_le_card, NatOrdinal.toOrdinal_eq_zero, omega0_le_preOmega_iff, IsFundamentalSequence.ord_cof, invVeblenโ‚‚_le, mulLeftMono, instNoMaxOrder, bsup_succ_le_blsub, lift_preOmega, succ_iSup_eq_lsub_iff, omega0_lt_gamma, Cardinal.aleph0_le_aleph, zero_lt_card, lift_type_le, IsInitial.card_le_card, Cardinal.preAleph_le_preAleph, small_Ioc, omega_strictMono, toPGame_lt_iff, lt_pred_iff_succ_lt, ONote.fundamentalSequenceProp_inl_some, sup_eq_lsub, veblenWith_le_veblenWith_iff, iSup_eq_lsub_iff_lt_iSup, cmp_veblenWith, lsub_typein, ONote.NF.of_dvd_omega0_opow, lt_gamma_zero, Cardinal.aleph0_lt_aleph_one, IsNormal.strictMono, lt_bsup_of_ne_bsup, RelEmbedding.ordinal_type_le, opow_lt_veblen_opow_iff, toNatOrdinal_eq_zero, SetTheory.Game.small_setOf_birthday_lt, bsup_le_iff, veblenWith_succ, lt_veblen_iff_invVeblenโ‚_le, SetTheory.PGame.toLeftMovesNim_symm_lt, toGame_inj, Cardinal.preAleph_lt_preAleph, univ_id, gamma_lt_gamma, lt_iSup_iff, Cardinal.aleph_mul_aleph, CNF.lt_snd, Cardinal.beth_strictMono, SetTheory.Game.neg_birthday_le, Cardinal.isRegular_aleph_one, ZFSet.mem_vonNeumann_succ, instAddLeftReflectLE, ZFSet.rank_le_iff, le_lift_iff, iSup_Iio_eq_bsup, IsFundamentalSequence.succ, Profinite.NobelingProof.contained_proj, Cardinal.lift_le_aleph_one, SetTheory.PGame.moveLeft_toLeftMovesNim, nfpFamily_le_iff, MeasurableSpace.generateMeasurableRec_mono, ONote.repr_le_repr, one_le_iff_ne_zero, nadd_succ, veblen_lt_veblen_iff, instIsEmptyIioZero, lt_nfp_iff, ONote.fundamentalSequenceProp_inr, invVeblenโ‚_lt_iff, ONote.repr_lt_repr, toPGame_moveLeft, preOmega_strictMono, SetTheory.PGame.birthday_moveRight_lt, ZFSet.mem_vonNeumann, principal_opow_omega, PSet.lt_rank_iff, card_preOmega, lsub_le_succ_iSup, typein_lt_self, OrdinalApprox.exists_lfpApprox_eq_lfpApprox, lt_veblen, toZFSet_subset_toZFSet_iff, nat_lt_omega0, invVeblenโ‚‚_lt_iff, toNatOrdinal_natCast, NatOrdinal.toOrdinal_symm_eq, Cardinal.aleph1_eq_lift, ZFSet.rank_sUnion_le, NatOrdinal.toOrdinal_one, lt_lsub, toNimber_zero, bsup_eq_blsub, NatOrdinal.toOrdinal_toNatOrdinal, sInf_compl_lt_ord_succ, Cardinal.ord_strictMono, add_mul_succ, Cardinal.preAleph_le_preBeth, MeasurableSpace.generateMeasurableRec_omega_one, Cardinal.ord_lt_ord, blsub_const, ZFSet.rank_lt_of_mem, small_Ioo, Cardinal.preAleph_pos, Cardinal.beth_lt_beth, ToType.mk_apply, blsub_one, small_Iio, toPGame_moveLeft_hEq, Cardinal.omega0_lt_ord, typein_one_toType, succ_pos, toNimber_toOrdinal, toNimber_max, canonicallyOrderedAdd, bsup_le_blsub, toZFSet_monotone, mem_range_preOmega_iff, omega_max, CNF.fst_le_log, toNimber_eq_one, Profinite.NobelingProof.Products.prop_of_isGood_of_contained, Cardinal.aleph_eq_preAleph, omega_pos, invVeblenโ‚‚_lt, to_leftMoves_one_toPGame_symm, lt_omega0, le_add_right, nadd_lt_nadd_iff_right, lt_invVeblenโ‚‚_iff, add_le_iff, Cardinal.preBeth_strictMono, veblen_right_strictMono, typein_le_typein', succ_pred_eq_iff_not_isSuccPrelimit, toGame_injective, CountableInterFilter.toCardinalInterFilter, Cardinal.aleph_one_eq_lift, enum_inj, sup_eq_lsub_or_sup_succ_eq_lsub, Nimber.toOrdinal_symm_eq, Profinite.NobelingProof.injective_ฯ€s, Cardinal.aleph_toENat, Cardinal.preBeth_mono, Cardinal.countable_iff_lt_aleph_one, SetTheory.Game.birthday_quot_le_pGameBirthday, veblen_succ, instAddLeftMono, opow_succ, add_one_eq_succ, card_lt_aleph0, nfpFamily_le_apply, IsAcc.pos, IsNormal.le_iff_deriv, Profinite.NobelingProof.GoodProducts.range_equiv_smaller_toFun_bijective, ZFSet.rank_pair, add_le_add_iff_right, SetTheory.PGame.nim_grundyValue, MeasurableSpace.generateMeasurableRec_omega1, ZFSet.IsOrdinal.rank_lt_iff_mem, toZFSet_succ, preOmega_le_preOmega, veblenWith_eq_veblenWith_iff, epsilon_pos, CNF_fst_le_log, lift_omega, preOmega_omega0, card_lt_ofNat, iSup_le_iff, Cardinal.aleph0_mul_aleph, preOmega_lt_preOmega, left_le_veblen, Cardinal.lift_lt_aleph1, Cardinal.ord_card_le, iSup_eq_lsub, not_bddAbove_compl_of_small, Cardinal.mk_biUnion_le_of_le, veblen_lt_veblen_iff_right, nmul_le_iff, lt_bsup, iSup_eq_lsub_iff, toPGame_le_iff, Nimber.toOrdinal_zero, NatOrdinal.toOrdinal_zero, ZFSet.rank_singleton, add_le_right_iff_mul_omega0_le, iterate_omega0_opow_lt_epsilon_zero, Cardinal.isSuccLimit_omega, Mathlib.Meta.NormNum.isNat_ordinalLE_false, Cardinal.ord_le_omega0, self_le_succ_pred, Cardinal.aleph_one_lt_lift, typein_inj, veblenWith_of_ne_zero, SetTheory.PGame.moveRight_nim_heq, sub_ne_zero_iff_lt, Nimber.toOrdinal_toNimber, le_one_iff, natCast_lt_epsilon, InitialSeg.ordinal_type_le, instAddRightReflectLT, Cardinal.mk_iUnion_Ordinal_lift_le_of_le, lt_veblen_invVeblenโ‚, toNatOrdinal_toOrdinal, SetTheory.PGame.moveLeft_nim_heq, preOmega_natCast, blsub_le_bsup_succ, Cardinal.preBeth_pos, IsNormal.le_iff_eq, toLeftMovesToPGame_symm_lt, toZFSetIso_symm_apply, Cardinal.ord_le_type, isSuccLimit_of_mem_frontier, lsub_unique, NatOrdinal.toOrdinal_eq_one, SetTheory.PGame.moveLeft_nim, lt_nadd_iff, Cardinal.mem_range_aleph_iff, lsub_le_sup_succ, Cardinal.ord_mono, Cardinal.aleph_lt_aleph, CNF_lt_snd, Cardinal.mk_biUnion_le_of_le_lift, ZFSet.vonNeumann_succ, nmul_eq_mul, succ_iSup_le_lsub_iff, toZFSet_mem_toZFSet_iff, le_div, small_Ico, IsInitial.mem_range_preOmega, Cardinal.lt_ord, nhds_eq_pure, succ_nadd, Cardinal.aleph_toNat, range_preOmega, one_lt_omega0, preOmega_max, one_le_card, nadd_one, SetTheory.PGame.nim_add_nim_equiv, veblen_zero_strictMono, le_add_sub, toGame_nadd, SetTheory.PGame.moveRight_toRightMovesNim, right_le_veblen, Cardinal.succ_aleph0, toNatOrdinal_max, ZFSet.le_succ_rank_sUnion, Nimber.toOrdinal_eq_zero, le_iff_deriv, natCast_lt_gamma, toGame_natCast, toPGameEmbedding_apply, PSet.rank_pair, le_omega_self, Cardinal.aleph_zero, lift_le, isNormal_iff_strictMono_and_continuous, isSuccLimit_iff_omega0_dvd, gamma_succ_eq_nfp, lt_lsub_iff, veblenWith_left_monotone, SetTheory.PGame.toRightMovesNim_symm_lt, ONote.NFBelow.repr_lt, le_of_dvd, le_nfpFamily, principal_mul_iff_le_two_or_omega0_opow_opow, lt_epsilon0, toGame_le_iff, veblen_pos, Cardinal.lift_preAleph, omega_eq_preOmega, Cardinal.lift_lt_aleph_one, toNatOrdinal_symm_eq, monotone_gamma, mul_div_le, top_typein, SetTheory.PGame.toLeftMovesNim_one_symm, sup_typein_succ, liftPrincipalSeg_top, enum_type, nadd_lt_nadd_iff_left, right_le_veblenWith, nadd_eq_add, one_toType_eq, isNormal_omega, MeasurableSpace.generateMeasurable_eq_rec, toPGame_moveLeft', Profinite.NobelingProof.succ_mono, apply_lt_veblenWith_apply_iff, veblen_left_monotone
principalSegToType ๐Ÿ“–CompOpโ€”
termTypeLT_ ๐Ÿ“–CompOpโ€”
termฯ‰ ๐Ÿ“–CompOpโ€”
toType ๐Ÿ“–CompOpโ€”
toTypeOrderBot ๐Ÿ“–CompOpโ€”
type ๐Ÿ“–CompOp
76 mathmath: type_eq, lift_type_lt, mem_range_typein_iff, type_uLift, liftOnWellOrder_type, type_lt_iff, liftPrincipalSeg_top', enum_symm_apply_coe, blsub_eq_blsub, enum_zero_le, enum_lt_enum, cof_type, type_le_iff, typein_top, brange_bfamilyOfFamily', enum_le_enum', lift_type_eq, type_eq_zero_of_empty, typein_lt_type, type_le_iff', RelIso.ordinal_lift_type_eq, PrincipalSeg.ordinal_type_lt, Cardinal.ord_eq_Inf, type_subrel, le_enum_succ, type_eq_one_iff_unique, enum_typein, blsub_type, type_pEmpty, bsup_eq_sup, type_prod_lex, Cardinal.type_cardinal, type_fintype, enum_succ_eq_top, typein_surjOn, cof_type_le, enum_le_enum, ord_cof_eq, lift_typein_top, brange_bfamilyOfFamily, type_lift_preimage, type_pUnit, card_type, lift_type_le, RelEmbedding.ordinal_type_le, enum_zero_eq_bot, univ_id, bsup'_eq_iSup, type_empty, type_nat_lt, type_unit, bsup_eq_iSup, RelIso.ordinal_type_eq, type_eq_one_of_unique, type_sum_lex, bsup_eq_sup', Cardinal.ord_eq, ToType.mk_apply, cof_type_lt, cof_eq, blsub_eq_lsub, enum_inj, blsub_eq_lsub', bsup_eq_bsup, type_eq_zero_iff_isEmpty, InitialSeg.ordinal_type_le, enum_zero_le', Cardinal.ord_le_type, familyOfBFamily_enum, type_toType, le_cof_type, type_fin, top_typein, enum_type, one_toType_eq, type_preimage
typein ๐Ÿ“–CompOp
33 mathmath: typein_le_typein, mem_range_typein_iff, iSup_typein_succ, enum_symm_apply_coe, typein_top, bfamilyOfFamily'_typein, typein_lt_type, typein_lt_typein, IsWellFounded.rank_eq_typein, type_subrel, enum_typein, Cardinal.card_typein_lt, Cardinal.card_typein_toType_lt, blsub_type, bfamilyOfFamily_typein, typein_enum, typein_surj, typein_injective, typein_apply, ToType.mk_symm_apply_coe, typein_surjOn, iSup_typein_limit, card_typein, lift_typein_top, typein_ordinal, lsub_typein, typein_lt_self, typein_one_toType, sup_typein_limit, typein_le_typein', typein_inj, top_typein, sup_typein_succ
uniqueIioOne ๐Ÿ“–CompOp
1 mathmath: Iio_one_default_eq
uniqueToTypeOne ๐Ÿ“–CompOpโ€”
univ ๐Ÿ“–CompOp
8 mathmath: Cardinal.ord_univ, cof_univ, Cardinal.type_cardinal, univ_id, univ_umax, card_univ, lift_univ, liftPrincipalSeg_top
wellFoundedRelation ๐Ÿ“–CompOpโ€”
zero ๐Ÿ“–CompOp
208 mathmath: toNimber_eq_zero, SetTheory.PGame.default_nim_one_rightMoves_eq, zero_nadd, sub_zero, max_zero_left, Iio_one_default_eq, lsub_pos, Cardinal.preBeth_eq_zero, ONote.NFBelow_zero, noZeroDivisors, cof_zero, log_of_left_le_one, sub_eq_zero_iff_le, mod_self, CNF.coeff_zero_left, ZFSet.rank_empty, not_lt_zero, gamma_zero_eq_nfp, invVeblenโ‚‚_zero, omega_zero, CNF_foldr, enum_zero_le, card_zero, SetTheory.PGame.isEmpty_nim_zero_leftMoves, invVeblenโ‚_zero, epsilon_zero_lt_gamma, log_zero_right, one_toPGame_leftMoves_default_eq, log_zero_left, toPGame_zero, log_eq_zero, veblen_gamma_zero, div_opow_log_pos, CNF.zero_left, log_one_left, Cardinal.ord_eq_zero, limitRecOn_zero, opow_mul_add_pos, CNF.coeff_zero_apply, succ_zero, SetTheory.PGame.toRightMovesNim_one_symm, epsilon_zero_le_of_omega0_opow_le, zero_opow', omega0_pos, zero_sub, isEmpty_zero_toPGame_leftMoves, eq_zero_or_opow_omega0_le_of_mul_eq_right, CNF.coeff_of_not_mem_CNF, instZeroLEOneClass, lt_one_iff_zero, isSuccLimit_add_iff, lt_gamma0, Profinite.NobelingProof.GoodProducts.P0, bot_eq_zero, type_eq_zero_of_empty, SetTheory.Game.birthday_zero, zero_CNF, CNF.of_lt, mul_mod, veblen_zero_lt_veblen_zero, CNFRec_zero, CNF.coeff_of_mem_CNF, enumOrd_zero, iterate_veblen_lt_gamma0, lt_epsilon_zero, boundedLimitRec_zero, le_zero, iterate_omega0_opow_lt_epsilon0, card_eq_zero, instPosMulStrictMono, mod_one, sub_self, invVeblenโ‚_of_lt_opow, isSuccPrelimit_zero, ONote.repr_zero, bsup_one, nfp_mul_zero, zero_or_succ_or_isSuccLimit, Cardinal.preBeth_zero, SetTheory.PGame.nim_one_moveLeft, bsup_zero, nfp_zero, Cardinal.ord_zero, div_eq_zero_of_lt, Cardinal.beth_zero, SetTheory.PGame.default_nim_one_leftMoves_eq, SetTheory.Game.birthday_eq_zero, invVeblenโ‚‚_gamma, veblen_zero, gamma_pos, add_eq_zero_iff, one_toPGame_moveLeft, SetTheory.PGame.birthday_zero, dvd_iff_mod_eq_zero, principal_add_iff_zero_or_omega0_opow, zero_opow_le, type_pEmpty, max_eq_zero, nmul_zero, CNF.of_le_one, ZFSet.vonNeumann_zero, preOmega_zero, PSet.rank_empty, veblen_zero_le_veblen_zero, isNormal_veblen_zero, CNF.rec_zero, mem_closure_tfae, isInitial_zero, not_isSuccLimit_zero, toGame_zero, deriv_zero, pred_zero, SetTheory.PGame.nim_zero_equiv, iterate_veblen_lt_gamma_zero, zero_nmul, IsNormal.eq_iff_zero_and_succ, epsilon0_lt_gamma, SetTheory.PGame.birthday_eq_zero, principal_one_iff, eq_zero_or_pos, zero_div, CNF.foldr, lift_zero, CNF.coeff_one_left, Cardinal.preAleph_zero, iSup_eq_zero_iff, Cardinal.IsRegular.ord_pos, epsilon0_eq_nfp, epsilon_zero_eq_nfp, toNatOrdinal_zero, div_pos, CNF.coeff_zero_right, NatOrdinal.toOrdinal_eq_zero, deriv_zero_left, mem_range_gamma, CNF.one_left, zero_lt_card, gamma0_eq_nfp, CNF_of_le_one, nfp_zero_left, lt_gamma_zero, opow_zero, mod_zero, toNatOrdinal_eq_zero, isEmpty_toType_zero, CNF.lt_snd, instIsEmptyIioZero, veblenWith_zero, type_empty, derivFamily_zero, epsilon0_le_of_omega0_opow_le, toNimber_zero, nadd_zero, Cardinal.preAleph_pos, blsub_one, SetTheory.PGame.nim_one_moveRight, typein_one_toType, CNF_of_lt, succ_pos, bsup_eq_zero_iff, omega_pos, to_leftMoves_one_toPGame_symm, toType_empty_iff_eq_zero, CNF.coeff_of_le_one, toZFSet_zero, mod_eq_zero_of_dvd, cof_eq_zero, veblen_zero_apply, deriv_zero_right, IsAcc.pos, blsub_eq_zero_iff, nfp_add_zero, epsilon_pos, one_CNF, log_pos, max_zero_right, blsub_zero, Nimber.toOrdinal_zero, NatOrdinal.toOrdinal_zero, lsub_empty, iterate_omega0_opow_lt_epsilon_zero, CNF_zero, type_eq_zero_iff_isEmpty, le_one_iff, lsub_eq_zero_iff, zero_opow, Cardinal.preBeth_pos, CNF_lt_snd, invVeblenโ‚_eq_iff, veblen_zero_inj, veblen_zero_strictMono, CNF.zero_right, IsFundamentalSequence.zero, Nimber.toOrdinal_eq_zero, Cardinal.aleph_zero, gamma_succ_eq_nfp, SetTheory.PGame.isEmpty_nim_zero_rightMoves, principal_zero, zero_mod, lt_epsilon0, veblen_pos, div_zero, instNeZeroOne, SetTheory.PGame.toLeftMovesNim_one_symm, sInf_empty, opow_eq_zero, one_toType_eq, log_one_right

Theorems

NameKindAssumesProvesValidatesDepends On
Iio_one_default_eq ๐Ÿ“–mathematicalโ€”Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
one
Unique.instInhabited
uniqueIioOne
Set
Set.instMembership
zero
zero_lt_one'
instZeroLEOneClass
instNeZeroOne
โ€”โ€”
add_one_eq_succ ๐Ÿ“–mathematicalโ€”Ordinal
add
one
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
โ€”โ€”
add_succ ๐Ÿ“–mathematicalโ€”Ordinal
add
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
โ€”add_assoc
aleph0_le_card ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.aleph0
card
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
omega0
โ€”Cardinal.ord_le
Cardinal.ord_aleph0
bot_eq_zero ๐Ÿ“–mathematicalโ€”Bot.bot
Ordinal
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instOrderBot
zero
โ€”โ€”
canonicallyOrderedAdd ๐Ÿ“–mathematicalโ€”CanonicallyOrderedAdd
Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
โ€”existsAddOfLE
zero_add
add_le_add_left
instAddRightMono
add_zero
add_le_add_right
instAddLeftMono
card_add ๐Ÿ“–mathematicalโ€”card
Ordinal
add
Cardinal
Cardinal.instAdd
โ€”inductionOn
card_eq_nat ๐Ÿ“–mathematicalโ€”card
Cardinal
Cardinal.instNatCast
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”โ€”
card_eq_ofNat ๐Ÿ“–mathematicalโ€”card
Ordinal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”card_eq_nat
card_eq_one ๐Ÿ“–mathematicalโ€”card
Cardinal
Cardinal.instOne
Ordinal
one
โ€”Nat.cast_one
card_eq_nat
card_eq_zero ๐Ÿ“–mathematicalโ€”card
Cardinal
Cardinal.instZero
Ordinal
zero
โ€”Nat.cast_zero
card_eq_nat
card_le_card ๐Ÿ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Cardinal
Cardinal.instLE
card
โ€”inductionOn
card_le_nat ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
card
Cardinal.instNatCast
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”le_iff_le_iff_lt_iff_lt
nat_lt_card
card_le_ofNat ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
card
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”card_le_nat
card_le_one ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
card
Cardinal.instOne
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
โ€”Nat.cast_one
card_le_nat
card_lt_aleph0 ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
card
Cardinal.aleph0
Ordinal
partialOrder
omega0
โ€”le_iff_le_iff_lt_iff_lt
aleph0_le_card
card_lt_nat ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
card
Cardinal.instNatCast
Ordinal
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”lt_iff_lt_of_le_iff_le
nat_le_card
card_lt_ofNat ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
card
Ordinal
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”card_lt_nat
card_nat ๐Ÿ“–mathematicalโ€”card
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
Cardinal
Cardinal.instNatCast
โ€”Nat.cast_zero
card_zero
Nat.cast_succ
card_add
card_one
card_ofNat ๐Ÿ“–mathematicalโ€”card
Cardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
โ€”card_nat
card_omega0 ๐Ÿ“–mathematicalโ€”card
omega0
Cardinal.aleph0
โ€”โ€”
card_one ๐Ÿ“–mathematicalโ€”card
Ordinal
one
Cardinal
Cardinal.instOne
โ€”Cardinal.mk_eq_one
instIsWellOrderEmptyRelationOfSubsingleton
card_succ ๐Ÿ“–mathematicalโ€”card
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
Cardinal
Cardinal.instAdd
Cardinal.instOne
โ€”card_add
card_one
card_type ๐Ÿ“–mathematicalโ€”card
type
โ€”โ€”
card_typein ๐Ÿ“–mathematicalโ€”card
DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”โ€”
card_univ ๐Ÿ“–mathematicalโ€”card
univ
Cardinal.univ
โ€”โ€”
card_zero ๐Ÿ“–mathematicalโ€”card
Ordinal
zero
Cardinal
Cardinal.instZero
โ€”Cardinal.mk_eq_zero
instIsWellOrderEmptyRelationOfSubsingleton
PEmpty.instIsEmpty
enum_inj ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
Preorder.toLT
Set
Set.instMembership
RelIso.instFunLike
enum
โ€”EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
enum_le_enum ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
Preorder.toLT
Set
Set.instMembership
RelIso.instFunLike
enum
Preorder.toLE
โ€”enum_lt_enum
not_lt
enum_le_enum' ๐Ÿ“–mathematicalโ€”ToType
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
partialOrder
type
Preorder.toLT
isWellOrder_lt
wellFoundedLT_toType
Set
Set.instMembership
RelIso.instFunLike
enum
โ€”isWellOrder_lt
wellFoundedLT_toType
enum_le_enum
not_lt
enum_lt_enum ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
Preorder.toLT
Set
Set.instMembership
RelIso.instFunLike
enum
โ€”RelIso.map_rel_iff
enum_symm_apply_coe ๐Ÿ“–mathematicalโ€”Ordinal
PrincipalSeg.top
Preorder.toLT
PartialOrder.toPreorder
partialOrder
typein
DFunLike.coe
RelIso
Set.Elem
Set.Iio
type
Set
Set.instMembership
RelIso.instFunLike
RelIso.symm
enum
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
โ€”โ€”
enum_type ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
Preorder.toLT
Set
Set.instMembership
RelIso.instFunLike
enum
PrincipalSeg.top
โ€”RelEmbedding.injective
typein_enum
typein_top
enum_typein ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
Preorder.toLT
Set
Set.instMembership
RelIso.instFunLike
enum
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
typein_lt_type
โ€”enum_type
Subrel.instIsWellOrderSubtype
typein_lt_type
enum_zero_eq_bot ๐Ÿ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
DFunLike.coe
RelIso
Set.Elem
Set.Iio
type
ToType
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
isWellOrder_lt
wellFoundedLT_toType
Set
Set.instMembership
RelIso.instFunLike
enum
โ€”isWellOrder_lt
wellFoundedLT_toType
enum_zero_le ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
Preorder.toLT
Set
Set.instMembership
RelIso.instFunLike
enum
zero
โ€”typein_lt_type
enum_typein
enum_le_enum
enum_zero_le' ๐Ÿ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
ToType
Preorder.toLE
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
DFunLike.coe
RelIso
Set.Elem
Set.Iio
type
isWellOrder_lt
wellFoundedLT_toType
Set
Set.instMembership
RelIso.instFunLike
enum
IsWellOrder
type_toType
โ€”isWellOrder_lt
wellFoundedLT_toType
type_toType
not_lt
enum_zero_le
eq_zero_or_pos ๐Ÿ“–mathematicalโ€”Ordinal
zero
Preorder.toLT
PartialOrder.toPreorder
partialOrder
โ€”eq_bot_or_bot_lt
existsAddOfLE ๐Ÿ“–mathematicalโ€”ExistsAddOfLE
Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
โ€”inductionOnโ‚‚
InitialSeg.exists_sum_relIso
Sum.instIsWellOrderLex
RelIso.ordinal_type_eq
induction ๐Ÿ“–โ€”โ€”โ€”โ€”lt_wf
inductionOn ๐Ÿ“–โ€”typeโ€”โ€”โ€”
inductionOnWellOrder ๐Ÿ“–โ€”type
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsWellOrder
isWellOrder_lt
โ€”โ€”isWellOrder_lt
inductionOn
instIsStrictTotalOrderOfIsWellOrder
IsWellOrder.toIsWellFounded
inductionOnโ‚‚ ๐Ÿ“–โ€”typeโ€”โ€”โ€”
inductionOnโ‚ƒ ๐Ÿ“–โ€”typeโ€”โ€”โ€”
instAddLeftMono ๐Ÿ“–mathematicalโ€”AddLeftMono
Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
โ€”inductionOnโ‚ƒ
RelEmbedding.ordinal_type_le
Sum.instIsWellOrderLex
Sum.instTrichotomousLex_mathlib
IsWellOrder.toTrichotomous
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
InitialSeg.map_rel_iff
instAddRightMono ๐Ÿ“–mathematicalโ€”AddRightMono
Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
โ€”inductionOnโ‚ƒ
RelEmbedding.ordinal_type_le
Sum.instIsWellOrderLex
Sum.instTrichotomousLex_mathlib
IsWellOrder.toTrichotomous
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
InitialSeg.map_rel_iff
instIsEmptyIioZero ๐Ÿ“–mathematicalโ€”IsEmpty
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
zero
โ€”IsMin.Iio_eq
instNeZeroOne ๐Ÿ“–mathematicalโ€”Ordinal
zero
one
โ€”one_ne_zero
instNoMaxOrder ๐Ÿ“–mathematicalโ€”NoMaxOrder
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
โ€”le_rfl
instZeroLEOneClass ๐Ÿ“–mathematicalโ€”ZeroLEOneClass
Ordinal
zero
one
Preorder.toLE
PartialOrder.toPreorder
partialOrder
โ€”โ€”
isEmpty_toType_zero ๐Ÿ“–mathematicalโ€”IsEmpty
ToType
Ordinal
zero
โ€”toType_empty_iff_eq_zero
le_add_left ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
โ€”le_add_self
canonicallyOrderedAdd
le_add_right ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
โ€”le_self_add
canonicallyOrderedAdd
le_enum_succ ๐Ÿ“–mathematicalโ€”ToType
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
Preorder.toLE
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
DFunLike.coe
RelIso
Set.Elem
Set.Iio
type
Preorder.toLT
isWellOrder_lt
wellFoundedLT_toType
Set
Set.instMembership
RelIso.instFunLike
enum
Order.lt_succ
instNoMaxOrder
IsWellOrder
type_toType
โ€”isWellOrder_lt
wellFoundedLT_toType
Order.lt_succ
instNoMaxOrder
type_toType
typein_lt_type
enum_typein
enum_le_enum'
Order.lt_succ_iff
typein_lt_self
le_lift_iff ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
lift
โ€”InitialSeg.le_apply_iff
le_one_iff ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
zero
โ€”bot_eq_zero'
canonicallyOrderedAdd
succ_zero
Order.le_succ_bot_iff
le_zero ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
zero
โ€”le_bot_iff
liftInitialSeg_coe ๐Ÿ“–mathematicalโ€”DFunLike.coe
InitialSeg
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
InitialSeg.instFunLike
liftInitialSeg
lift
โ€”โ€”
liftOnWellOrder_type ๐Ÿ“–mathematicalโ€”liftOnWellOrder
type
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsWellOrder
isWellOrder_lt
โ€”isWellOrder_lt
LinearOrder.ext_lt
liftPrincipalSeg_coe ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
liftPrincipalSeg
lift
โ€”โ€”
liftPrincipalSeg_top ๐Ÿ“–mathematicalโ€”PrincipalSeg.top
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
liftPrincipalSeg
univ
โ€”โ€”
liftPrincipalSeg_top' ๐Ÿ“–mathematicalโ€”PrincipalSeg.top
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
liftPrincipalSeg
type
IsWellOrder
isWellOrder_lt
instLinearOrder
wellFoundedLT
โ€”isWellOrder_lt
wellFoundedLT
univ_id
lift_card ๐Ÿ“–mathematicalโ€”Cardinal.lift
card
lift
โ€”inductionOn
lift_id ๐Ÿ“–mathematicalโ€”liftโ€”lift_id'
lift_id' ๐Ÿ“–mathematicalโ€”liftโ€”inductionOn
lift_inj ๐Ÿ“–mathematicalโ€”liftโ€”โ€”
lift_le ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
lift
โ€”inductionOnโ‚‚
lift_umax
lift_type_le
lift_lift ๐Ÿ“–mathematicalโ€”liftโ€”InitialSeg.eq
isWellOrder_lt
wellFoundedLT
lift_lt ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
โ€”โ€”
lift_omega0 ๐Ÿ“–mathematicalโ€”lift
omega0
โ€”lift_lift
lift_one ๐Ÿ“–mathematicalโ€”lift
Ordinal
one
โ€”type_eq_one_of_unique
instIsWellOrderEmptyRelationOfSubsingleton
ULift.instNonempty_mathlib
lift_type_eq ๐Ÿ“–mathematicalโ€”lift
type
RelIso
โ€”Quotient.eq'
lift_type_le ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
lift
type
InitialSeg
โ€”โ€”
lift_type_lt ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
type
PrincipalSeg
โ€”โ€”
lift_typein_top ๐Ÿ“–mathematicalโ€”lift
DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
PrincipalSeg.top
type
โ€”RelIso.ordinal_lift_type_eq
Subrel.instIsWellOrderSubtype
lift_umax ๐Ÿ“–mathematicalโ€”liftโ€”inductionOn
lift_univ ๐Ÿ“–mathematicalโ€”lift
univ
โ€”lift_lift
lift_uzero ๐Ÿ“–mathematicalโ€”liftโ€”lift_id'
lift_zero ๐Ÿ“–mathematicalโ€”lift
Ordinal
zero
โ€”type_eq_zero_of_empty
instIsWellOrderEmptyRelationOfSubsingleton
ULift.instIsEmpty
PEmpty.instIsEmpty
lt_lift_iff ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
lift
โ€”InitialSeg.lt_apply_iff
lt_one_iff_zero ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
zero
โ€”bot_eq_zero'
canonicallyOrderedAdd
succ_zero
Order.lt_succ_bot_iff
instNoMaxOrder
lt_wf ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
โ€”wellFounded_iff_wellFounded_subrel
instIsTransLt
Quot.induction_on
RelHomClass.wellFounded
RelIso.instRelHomClass
IsWellFounded.wf
IsWellOrder.toIsWellFounded
max_eq_zero ๐Ÿ“–mathematicalโ€”Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
zero
โ€”max_eq_bot
max_zero_left ๐Ÿ“–mathematicalโ€”Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
zero
โ€”max_bot_left
max_zero_right ๐Ÿ“–mathematicalโ€”Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
zero
โ€”max_bot_right
mem_range_lift_of_card_le ๐Ÿ“–mathematicalCardinal
Cardinal.instLE
card
Cardinal.lift
Ordinal
Set
Set.instMembership
Set.range
lift
โ€”mem_range_lift_of_le
LT.lt.le
Cardinal.lift_ord
Cardinal.lift_succ
Cardinal.card_le_iff
mem_range_lift_of_le ๐Ÿ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
lift
Set
Set.instMembership
Set.range
โ€”InitialSeg.mem_range_of_le
mem_range_typein_iff ๐Ÿ“–mathematicalโ€”Ordinal
Set
Set.instMembership
Set.range
DFunLike.coe
RelEmbedding
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
type
โ€”PrincipalSeg.mem_range_iff_rel
natCast_succ ๐Ÿ“–mathematicalโ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
โ€”โ€”
nat_le_card ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.instNatCast
card
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”Cardinal.ord_le
Cardinal.ord_nat
nat_lt_card ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instNatCast
card
Ordinal
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”Order.succ_le_iff
Cardinal.instNoMaxOrder
instNoMaxOrder
Cardinal.nat_succ
nat_le_card
nontrivial ๐Ÿ“–mathematicalโ€”Nontrivial
Ordinal
โ€”one_ne_zero
not_lt_zero ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
โ€”not_lt_bot
ofNat_le_card ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
card
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”nat_le_card
ofNat_lt_card ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
card
Ordinal
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”nat_lt_card
one_le_card ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.instOne
card
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
โ€”Nat.cast_one
nat_le_card
one_le_iff_ne_zero ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
โ€”Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
one_lt_card ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
card
Ordinal
partialOrder
one
โ€”Nat.cast_one
nat_lt_card
one_ne_zero ๐Ÿ“–โ€”โ€”โ€”โ€”type_ne_zero_of_nonempty
instIsWellOrderEmptyRelationOfSubsingleton
one_toType_eq ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
type
ToType
one
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
isWellOrder_lt
wellFoundedLT_toType
Set
Set.instMembership
RelIso.instFunLike
enum
zero
โ€”Unique.eq_default
relIso_enum ๐Ÿ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
type
DFunLike.coe
RelIso
RelIso.instFunLike
Set.Elem
Set.Iio
Set
Set.instMembership
enum
LT.lt.trans_eq
WellOrder
isEquivalent
โ€”relIso_enum'
LT.lt.trans_eq
relIso_enum' ๐Ÿ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
type
DFunLike.coe
RelIso
RelIso.instFunLike
Set.Elem
Set.Iio
Set
Set.instMembership
enum
โ€”inductionOn
enum_type
sInf_empty ๐Ÿ“–mathematicalโ€”InfSet.sInf
Ordinal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instEmptyCollection
zero
โ€”Set.not_nonempty_empty
wellFoundedLT
small_Icc ๐Ÿ“–mathematicalโ€”Small
Set.Elem
Ordinal
Set.Icc
PartialOrder.toPreorder
partialOrder
โ€”small_subset
Set.Icc_subset_Iic_self
small_Iic
small_Ico ๐Ÿ“–mathematicalโ€”Small
Set.Elem
Ordinal
Set.Ico
PartialOrder.toPreorder
partialOrder
โ€”small_subset
Set.Ico_subset_Iio_self
small_Iio
small_Iic ๐Ÿ“–mathematicalโ€”Small
Set.Elem
Ordinal
Set.Iic
PartialOrder.toPreorder
partialOrder
โ€”Set.Iio_union_right
small_union
small_Iio
Countable.toSmall
Finite.to_countable
Finite.of_fintype
small_Iio ๐Ÿ“–mathematicalโ€”Small
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
โ€”โ€”
small_Ioc ๐Ÿ“–mathematicalโ€”Small
Set.Elem
Ordinal
Set.Ioc
PartialOrder.toPreorder
partialOrder
โ€”small_subset
Set.Ioc_subset_Iic_self
small_Iic
small_Ioo ๐Ÿ“–mathematicalโ€”Small
Set.Elem
Ordinal
Set.Ioo
PartialOrder.toPreorder
partialOrder
โ€”small_subset
Set.Ioo_subset_Iio_self
small_Iio
succ_ne_zero ๐Ÿ“–โ€”โ€”โ€”โ€”ne_of_gt
succ_pos
succ_one ๐Ÿ“–mathematicalโ€”Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
one
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
โ€”zero_add
succ_pos ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Order.succ
instSuccOrder
โ€”Order.bot_lt_succ
nontrivial
succ_zero ๐Ÿ“–mathematicalโ€”Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
zero
one
โ€”zero_add
toType_empty_iff_eq_zero ๐Ÿ“–mathematicalโ€”IsEmpty
ToType
Ordinal
zero
โ€”isWellOrder_lt
wellFoundedLT_toType
type_eq_zero_iff_isEmpty
type_toType
toType_nonempty_iff_ne_zero ๐Ÿ“–mathematicalโ€”ToTypeโ€”isWellOrder_lt
wellFoundedLT_toType
type_ne_zero_iff_nonempty
type_toType
top_typein ๐Ÿ“–mathematicalโ€”PrincipalSeg.top
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
typein
type
โ€”โ€”
type_empty ๐Ÿ“–mathematicalโ€”type
instIsWellOrderEmptyRelationOfSubsingleton
Ordinal
zero
โ€”type_eq_zero_of_empty
instIsWellOrderEmptyRelationOfSubsingleton
Empty.instIsEmpty
type_eq ๐Ÿ“–mathematicalโ€”type
RelIso
โ€”Quotient.eq'
type_eq_one_iff_unique ๐Ÿ“–mathematicalโ€”type
Ordinal
one
Unique
โ€”instIsWellOrderEmptyRelationOfSubsingleton
type_eq
type_eq_one_of_unique
Unique.instSubsingleton
type_eq_one_of_unique ๐Ÿ“–mathematicalโ€”type
Ordinal
one
โ€”nonempty_unique
RelIso.ordinal_type_eq
instIsWellOrderEmptyRelationOfSubsingleton
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
instIsStrictTotalOrderOfIsWellOrder
instIrreflEmptyRelation_mathlib
type_eq_zero_iff_isEmpty ๐Ÿ“–mathematicalโ€”type
Ordinal
zero
IsEmpty
โ€”instIsWellOrderEmptyRelationOfSubsingleton
type_eq
Equiv.isEmpty
PEmpty.instIsEmpty
type_eq_zero_of_empty
type_eq_zero_of_empty ๐Ÿ“–mathematicalโ€”type
Ordinal
zero
โ€”RelIso.ordinal_type_eq
instIsWellOrderEmptyRelationOfSubsingleton
PEmpty.instIsEmpty
type_fin ๐Ÿ“–mathematicalโ€”type
IsWellOrder
Fin.Lt.isWellOrder
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
โ€”Fin.Lt.isWellOrder
type_fintype
Fintype.card_fin
type_fintype ๐Ÿ“–mathematicalโ€”type
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
Fintype.card
โ€”card_eq_nat
card_type
Cardinal.mk_fintype
type_le_iff ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
type
InitialSeg
โ€”โ€”
type_le_iff' ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
type
RelEmbedding
โ€”โ€”
type_lift_preimage ๐Ÿ“–mathematicalโ€”lift
type
Order.Preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RelIso.IsWellOrder.preimage
โ€”RelIso.ordinal_lift_type_eq
RelIso.IsWellOrder.preimage
type_lt_iff ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
type
PrincipalSeg
โ€”โ€”
type_nat_lt ๐Ÿ“–mathematicalโ€”type
IsWellOrder
isWellOrder_lt
Nat.instLinearOrder
instWellFoundedLTNat
omega0
โ€”isWellOrder_lt
instWellFoundedLTNat
lift_id
type_ne_zero_iff_nonempty ๐Ÿ“–โ€”โ€”โ€”โ€”โ€”
type_ne_zero_of_nonempty ๐Ÿ“–โ€”โ€”โ€”โ€”type_ne_zero_iff_nonempty
type_pEmpty ๐Ÿ“–mathematicalโ€”type
instIsWellOrderEmptyRelationOfSubsingleton
Ordinal
zero
โ€”instIsWellOrderEmptyRelationOfSubsingleton
type_pUnit ๐Ÿ“–mathematicalโ€”type
instIsWellOrderEmptyRelationOfSubsingleton
Ordinal
one
โ€”instIsWellOrderEmptyRelationOfSubsingleton
type_preimage ๐Ÿ“–mathematicalโ€”type
Order.Preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RelIso.IsWellOrder.preimage
โ€”RelIso.ordinal_type_eq
RelIso.IsWellOrder.preimage
type_subrel ๐Ÿ“–mathematicalโ€”type
Subrel
Subrel.instIsWellOrderSubtype
DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”Subrel.instIsWellOrderSubtype
type_sum_lex ๐Ÿ“–mathematicalโ€”type
Sum.instIsWellOrderLex
Ordinal
add
โ€”Sum.instIsWellOrderLex
type_toType ๐Ÿ“–mathematicalโ€”type
ToType
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IsWellOrder
isWellOrder_lt
wellFoundedLT_toType
โ€”Quotient.out_eq
type_uLift ๐Ÿ“–mathematicalโ€”type
Order.Preimage
RelIso.IsWellOrder.ulift
lift
โ€”RelIso.IsWellOrder.ulift
type_unit ๐Ÿ“–mathematicalโ€”type
instIsWellOrderEmptyRelationOfSubsingleton
Ordinal
one
โ€”instIsWellOrderEmptyRelationOfSubsingleton
typein_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
InitialSeg
InitialSeg.instFunLike
โ€”instIsTransLt
InitialSeg.transPrincipal_apply
PrincipalSeg.eq
isWellOrder_lt
wellFoundedLT
typein_enum ๐Ÿ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
type
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
RelIso
Set.Elem
Set.Iio
Set
Set.instMembership
RelIso.instFunLike
enum
โ€”PrincipalSeg.apply_subrelIso
typein_inj ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”typein_injective
typein_injective ๐Ÿ“–mathematicalโ€”Ordinal
DFunLike.coe
RelEmbedding
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”RelEmbedding.injective
typein_le_typein ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”not_lt
typein_lt_typein
typein_le_typein' ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
DFunLike.coe
RelEmbedding
ToType
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
isWellOrder_lt
wellFoundedLT_toType
โ€”isWellOrder_lt
wellFoundedLT_toType
typein_lt_self ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
RelEmbedding
ToType
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
isWellOrder_lt
wellFoundedLT_toType
โ€”isWellOrder_lt
wellFoundedLT_toType
type_toType
typein_lt_type
typein_lt_type ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
type
โ€”PrincipalSeg.lt_top
typein_lt_typein ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”RelEmbedding.map_rel_iff
typein_one_toType ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelEmbedding
ToType
Ordinal
one
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
isWellOrder_lt
wellFoundedLT_toType
zero
โ€”isWellOrder_lt
wellFoundedLT_toType
one_toType_eq
typein_enum
typein_surj ๐Ÿ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
type
Set
Set.instMembership
Set.range
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
โ€”PrincipalSeg.mem_range_of_rel_top
typein_surjOn ๐Ÿ“–mathematicalโ€”Set.SurjOn
Ordinal
DFunLike.coe
RelEmbedding
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
Set.univ
Set.Iio
type
โ€”PrincipalSeg.surjOn
typein_top ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
typein
PrincipalSeg.top
type
โ€”RelIso.ordinal_type_eq
Subrel.instIsWellOrderSubtype
univ_id ๐Ÿ“–mathematicalโ€”univ
type
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
IsWellOrder
isWellOrder_lt
instLinearOrder
wellFoundedLT
โ€”lift_id
univ_umax ๐Ÿ“–mathematicalโ€”univโ€”lift_umax
wellFoundedLT ๐Ÿ“–mathematicalโ€”WellFoundedLT
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
โ€”lt_wf
zero_lt_card ๐Ÿ“–mathematicalโ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
card
Ordinal
partialOrder
zero
โ€”Nat.cast_zero
nat_lt_card

Ordinal.ToType

Definitions

NameCategoryTheorems
mk ๐Ÿ“–CompOpโ€”
toOrd ๐Ÿ“–CompOp
4 mathmath: Ordinal.card_iSup_Iio_le_sum_card, Ordinal.toPGame_moveLeft_hEq, SetTheory.PGame.moveRight_nim_heq, SetTheory.PGame.moveLeft_nim_heq

Theorems

NameKindAssumesProvesValidatesDepends On
mk_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelIso
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.ToType
Preorder.toLE
Set
Set.instMembership
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
RelIso.instFunLike
Ordinal.type
Preorder.toLT
Ordinal.enum
โ€”โ€”
mk_symm_apply_coe ๐Ÿ“–mathematicalโ€”Ordinal
Set
Set.instMembership
Set.Iio
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
RelIso
Ordinal.ToType
Set.Elem
Preorder.toLE
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
RelIso.instFunLike
RelIso.symm
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Ordinal.typein
โ€”โ€”

PrincipalSeg

Theorems

NameKindAssumesProvesValidatesDepends On
ordinal_type_lt ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
โ€”โ€”

RelEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
ordinal_type_le ๐Ÿ“–mathematicalโ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.type
โ€”โ€”

RelIso

Theorems

NameKindAssumesProvesValidatesDepends On
ordinal_lift_type_eq ๐Ÿ“–mathematicalโ€”Ordinal.lift
Ordinal.type
โ€”ordinal_type_eq
IsWellOrder.preimage
ordinal_type_eq ๐Ÿ“–mathematicalโ€”Ordinal.typeโ€”Ordinal.type_eq

WellOrder

Definitions

NameCategoryTheorems
inhabited ๐Ÿ“–CompOpโ€”
r ๐Ÿ“–MathDef
1 mathmath: wo
ฮฑ ๐Ÿ“–CompOp
1 mathmath: wo

Theorems

NameKindAssumesProvesValidatesDepends On
wo ๐Ÿ“–mathematicalโ€”IsWellOrder
ฮฑ
r
โ€”โ€”

(root)

Definitions

NameCategoryTheorems
WellOrder ๐Ÿ“–CompData
1 mathmath: Ordinal.relIso_enum
hasWellFounded_toType ๐Ÿ“–CompOpโ€”
linearOrder_toType ๐Ÿ“–CompOp
62 mathmath: Ordinal.iSup_typein_succ, Field.Emb.Cardinal.directed_filtration, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, Field.Emb.Cardinal.filtration_succ, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, Field.Emb.Cardinal.two_le_deg, Field.Emb.Cardinal.isLeast_leastExt, Ordinal.enum_le_enum', Field.Emb.Cardinal.succEquiv_coherence, Cardinal.noMaxOrder, CategoryTheory.OrthogonalReflection.iteration_map_succ, Field.Emb.Cardinal.noMaxOrder_rank_toType, Ordinal.toType_noMax_of_succ_lt, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, CategoryTheory.instIsCardinalFilteredToTypeOrd, Field.Emb.Cardinal.strictMono_leastExt, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasIterationOfShape, Field.Emb.Cardinal.equivSucc_coherence, CategoryTheory.SmallObject.ฮนFunctorObj_eq, Ordinal.le_enum_succ, Cardinal.card_typein_toType_lt, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, Ordinal.cof_eq_cof_toType, CategoryTheory.OrthogonalReflection.iteration_map_succ_assoc, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, Ordinal.ToType.mk_symm_apply_coe, Field.Emb.Cardinal.filtration_apply, Ordinal.enum_succ_eq_top, Ordinal.iSup_typein_limit, Field.Emb.Cardinal.deg_lt_aleph0, CategoryTheory.SmallObject.hasIterationOfShape, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.SmallObject.ฯ€FunctorObj_eq, CategoryTheory.MorphismProperty.llp_rlp_of_hasSmallObjectArgument', Field.Emb.Cardinal.strictMono_filtration, Ordinal.lsub_typein, Ordinal.enum_zero_eq_bot, Ordinal.typein_lt_self, Field.Emb.Cardinal.iSup_adjoin_eq_top, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropฮนIteration_F, Ordinal.ToType.mk_apply, CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument', Field.Emb.Cardinal.adjoin_image_leastExt, Ordinal.typein_one_toType, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, Ordinal.sup_typein_limit, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, Ordinal.typein_le_typein', CategoryTheory.SmallObject.prop_iterationFunctor_map_succ, CategoryTheory.SmallObject.transfiniteCompositionsOfShape_ฮนObj, CategoryTheory.OrthogonalReflection.iteration_map_succ_surjectivity, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.SmallObject.preservesColimit, Ordinal.enum_zero_le', CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ฮนIteration_app_right_assoc, Ordinal.familyOfBFamily_enum, Ordinal.type_toType, wellFoundedLT_toType, Cardinal.mk_Iio_ord_toType, Ordinal.sup_typein_succ, Ordinal.one_toType_eq

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedLT_toType ๐Ÿ“–mathematicalโ€”WellFoundedLT
Ordinal.ToType
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
โ€”IsWellOrder.toIsWellFounded
WellOrder.wo

---

โ† Back to Index