Documentation Verification Report

CantorNormalForm

📁 Source: Mathlib/SetTheory/Ordinal/CantorNormalForm.lean

Statistics

MetricCount
DefinitionsCNF, coeff, rec, CNFRec
4
Theoremscoeff_of_le_one, coeff_of_mem_CNF, coeff_of_not_mem_CNF, coeff_one_left, coeff_zero_apply, coeff_zero_left, coeff_zero_right, foldr, fst_le_log, lt_snd, ne_zero, of_le_one, of_lt, one_left, rec_pos, rec_zero, snd_lt, sorted, zero_left, zero_right, CNFRec_pos, CNFRec_zero, CNF_foldr, CNF_fst_le_log, CNF_lt_snd, CNF_ne_zero, CNF_of_le_one, CNF_of_lt, CNF_snd_lt, CNF_sorted, CNF_zero, one_CNF, zero_CNF
33
Total37

Ordinal

Definitions

NameCategoryTheorems
CNF 📖CompOp
16 mathmath: CNF_foldr, CNF.zero_left, CNF.sorted, CNF_ne_zero, zero_CNF, CNF.of_lt, CNF_sorted, CNF.of_le_one, CNF.foldr, CNF.one_left, CNF_of_le_one, CNF.ne_zero, CNF_of_lt, one_CNF, CNF_zero, CNF.zero_right
CNFRec 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
CNFRec_pos 📖mathematicalOrdinal
mod
instPow
log
CNF.rec_pos
CNFRec_zero 📖mathematicalOrdinal
zero
CNF.rec_zero
CNF_foldr 📖mathematicalOrdinal
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
zero
CNF
CNF.foldr
CNF_fst_le_log 📖mathematicalOrdinal
CNF
Preorder.toLE
PartialOrder.toPreorder
partialOrder
log
CNF.fst_le_log
CNF_lt_snd 📖mathematicalOrdinal
CNF
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
CNF.lt_snd
CNF_ne_zero 📖mathematicalCNF
Ordinal
log
div
instPow
mod
CNF.ne_zero
CNF_of_le_one 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
CNF
zero
CNF.of_le_one
CNF_of_lt 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
CNF
zero
CNF.of_lt
CNF_snd_lt 📖Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
CNF
CNF.snd_lt
CNF_sorted 📖mathematicalList.SortedGT
Ordinal
PartialOrder.toPreorder
partialOrder
CNF
CNF.sorted
CNF_zero 📖mathematicalCNF
Ordinal
zero
CNF.zero_right
one_CNF 📖mathematicalCNF
Ordinal
one
zero
CNF.one_left
zero_CNF 📖mathematicalCNF
Ordinal
zero
CNF.zero_left

Ordinal.CNF

Definitions

NameCategoryTheorems
coeff 📖CompOp
7 mathmath: coeff_zero_left, coeff_zero_apply, coeff_of_not_mem_CNF, coeff_of_mem_CNF, coeff_one_left, coeff_zero_right, coeff_of_le_one
rec 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_of_le_one 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.one
coeff
Finsupp.single
Ordinal.zero
Finsupp.ext
eq_or_ne
coeff_zero_right
Finsupp.single_zero
coeff_of_mem_CNF
of_le_one
Finsupp.single_eq_same
Finsupp.single_eq_of_ne
coeff_of_not_mem_CNF
coeff_of_mem_CNF 📖mathematicalOrdinal
Ordinal.CNF
DFunLike.coe
Finsupp
Ordinal.zero
Finsupp.instFunLike
coeff
coeff.eq_1
AList.lookupFinsupp_apply
AList.mem_lookup_iff
coeff_of_not_mem_CNF 📖mathematicalOrdinal
Ordinal.CNF
DFunLike.coe
Finsupp
Ordinal.zero
Finsupp.instFunLike
coeff
coeff.eq_1
AList.lookupFinsupp_apply
AList.lookup_eq_none
coeff_one_left 📖mathematicalcoeff
Ordinal
Ordinal.one
Finsupp.single
Ordinal.zero
coeff_of_le_one
le_rfl
coeff_zero_apply 📖mathematicalDFunLike.coe
Finsupp
Ordinal
Ordinal.zero
Finsupp.instFunLike
coeff
coeff_of_not_mem_CNF
zero_right
coeff_zero_left 📖mathematicalcoeff
Ordinal
Ordinal.zero
Finsupp.single
coeff_of_le_one
zero_le_one
Ordinal.instZeroLEOneClass
coeff_zero_right 📖mathematicalcoeff
Ordinal
Ordinal.zero
Finsupp
Finsupp.instZero
Finsupp.ext
coeff_zero_apply
foldr 📖mathematicalOrdinal
Ordinal.add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
Ordinal.instPow
Ordinal.zero
Ordinal.CNF
zero_right
ne_zero
Ordinal.div_add_mod
fst_le_log 📖mathematicalOrdinal
Ordinal.CNF
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.log
zero_right
Ordinal.log_zero_right
Ordinal.canonicallyOrderedAdd
instIsEmptyFalse
ne_zero
le_refl
LE.le.trans
Ordinal.log_mono_right
LT.lt.le
Ordinal.mod_opow_log_lt_self
lt_snd 📖mathematicalOrdinal
Ordinal.CNF
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.zero
zero_right
instIsEmptyFalse
ne_zero
Ordinal.div_opow_log_pos
ne_zero 📖mathematicalOrdinal.CNF
Ordinal
Ordinal.log
Ordinal.div
Ordinal.instPow
Ordinal.mod
rec_pos
of_le_one 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.one
Ordinal.CNF
Ordinal.zero
Ordinal.le_one_iff
zero_left
one_left
of_lt 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.CNF
Ordinal.zero
ne_zero
Ordinal.log_eq_zero
Ordinal.opow_zero
Ordinal.div_one
Ordinal.mod_one
zero_right
one_left 📖mathematicalOrdinal.CNF
Ordinal
Ordinal.one
Ordinal.zero
ne_zero
Ordinal.log_one_left
Ordinal.opow_zero
Ordinal.div_one
Ordinal.mod_one
zero_right
rec_pos 📖mathematicalOrdinal
Ordinal.mod
Ordinal.instPow
Ordinal.log
rec_zero 📖mathematicalOrdinal
Ordinal.zero
snd_lt 📖Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.one
Ordinal.CNF
zero_right
instIsEmptyFalse
ne_zero
Ordinal.div_opow_log_lt
sorted 📖mathematicalList.SortedGT
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.CNF
zero_right
le_or_gt
of_le_one
lt_or_ge
of_lt
ne_zero
LE.le.trans_lt
fst_le_log
Ordinal.log_mod_opow_log_lt_log_self
zero_left 📖mathematicalOrdinal.CNF
Ordinal
Ordinal.zero
ne_zero
Ordinal.log_zero_left
Ordinal.opow_zero
Ordinal.div_one
Ordinal.mod_one
zero_right
zero_right 📖mathematicalOrdinal.CNF
Ordinal
Ordinal.zero
rec_zero

---

← Back to Index