π Source: Mathlib/SetTheory/Ordinal/Exponential.lean
instPow
add_log_le_log_mul
div_opow_log_lt
div_opow_log_pos
iSup_pow
iSup_pow_natCast
isNormal_opow
isSuccLimit_opow
isSuccLimit_opow_left
le_log_of_opow_le
left_le_opow
left_lt_opow
log_def
log_eq_iff
log_eq_zero
log_le_self
log_mod_opow_log_lt_log_self
log_mono_right
log_of_left_le_one
log_one_left
log_one_right
log_opow
log_opow_mul
log_opow_mul_add
log_pos
log_zero_left
log_zero_right
lt_log_of_lt_opow
lt_omega0_opow
lt_omega0_opow_succ
lt_opow_iff_log_lt
lt_opow_iff_log_lt'
lt_opow_of_isSuccLimit
lt_opow_of_log_lt
lt_opow_succ_log_self
mod_opow_log_lt_self
natCast_opow
natCast_pow
omega0_opow_mul_nat_lt
one_opow
opow_add
opow_dvd_opow
opow_dvd_opow_iff
opow_eq_zero
opow_le_iff_le_log
opow_le_iff_le_log'
opow_le_of_isSuccLimit
opow_le_of_le_log
opow_le_opow
opow_le_opow_iff_right
opow_le_opow_left
opow_le_opow_right
opow_limit
opow_log_le_self
opow_lt_opow_iff_right
opow_lt_opow_left_of_succ
opow_mul
opow_mul_add_lt_opow
opow_mul_add_lt_opow_mul
opow_mul_add_lt_opow_mul_succ
opow_mul_add_lt_opow_succ
opow_mul_add_pos
opow_natCast
opow_ne_zero
opow_one
opow_one_add
opow_pos
opow_right_inj
opow_succ
opow_zero
right_le_opow
succ_log_def
zero_opow
zero_opow'
zero_opow_le
invVeblenβ_eq_iff
le_invVeblenβ_iff
opow_omega0
CNF_foldr
principal_opow_ord
epsilon_eq_deriv
principal_opow_omega0
invVeblenβ_le_iff
card_omega0_opow
eq_zero_or_opow_omega0_le_of_mul_eq_right
CNF_ne_zero
veblen_opow_eq_opow_iff
lt_epsilon_zero
iterate_omega0_opow_lt_epsilon0
ONote.repr_scale
IsInitial.principal_opow
veblen_zero
mul_eq_right_iff_opow_omega0_dvd
ONote.omega0_le_oadd
principal_add_iff_zero_or_omega0_opow
epsilon_succ_eq_nfp
card_opow_le_of_omega0_le_right
card_opow_omega0
mem_range_veblen_iff_le_invVeblenβ
ONote.split_add_lt
natCast_opow_omega0
mul_eq_opow_log_succ
veblen_invVeblenβ_invVeblenβ
ONote.repr_opow
CNF.foldr
epsilon0_eq_nfp
epsilon_zero_eq_nfp
veblen_mem_range_opow
card_opow_eq_of_omega0_le_right
CNF.rec_pos
deriv_mul_eq_opow_omega0_mul
opow_lt_veblen_opow_iff
CNFRec_pos
card_opow_le_of_omega0_le_left
mul_le_right_iff_opow_omega0_dvd
Mathlib.Meta.NormNum.isNat_ordinalOPow
card_opow_eq_of_omega0_le_left
principal_mul_omega0_opow_opow
principal_opow_omega
CNF.ne_zero
invVeblenβ_lt_iff
NONote.repr_opow
invVeblenβ_lt
lt_invVeblenβ_iff
veblen_eq_opow_iff
principal_add_omega0_opow
nfp_mul_one
veblen_zero_apply
ONote.scale_opowAux
iterate_omega0_opow_lt_epsilon_zero
principal_add_opow_of_principal_add
card_opow_le
ONote.NFBelow.repr_lt
principal_mul_iff_le_two_or_omega0_opow_opow
lt_epsilon0
omega0_opow_epsilon
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
log
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
lt_or_ge
mul_ne_zero
noZeroDivisors
mul_le_mul'
mulLeftMono
mulRightMono
zero_add
le_rfl
Preorder.toLT
one
div
div_lt
LT.lt.ne'
LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
zero
eq_zero_or_pos
canonicallyOrderedAdd
div_one
pos_iff_ne_zero
div_pos
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Monoid.toNatPow
monoid
omega0
LE.le.lt_or_eq
Order.one_le_iff_pos
apply_omega0_of_isNormal
one_pow
ciSup_const
Order.IsNormal
instLinearOrder
Order.IsNormal.of_succ_lt
wellFoundedLT
mul_one
mul_lt_mul_of_pos_left
instPosMulStrictMono
Order.IsSuccLimit
Order.IsNormal.map_isSuccLimit
zero_or_succ_or_isSuccLimit
isSuccLimit_mul
Order.IsSuccLimit.bot_lt
one_lt_of_isSuccLimit
eq_or_ne
LT.lt.asymm
nonpos_iff_eq_zero
le_or_gt
lt_or_eq_of_le
lt_one_iff_zero
one_ne_zero
zero_le
le_refl
pred
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
setOf
Order.succ
instSuccOrder
le_antisymm
Order.lt_succ_iff
instNoMaxOrder
le_one_iff
succ_zero
LE.le.trans
mod
one_le_iff_ne_zero
LT.lt.le
Order.succ_le_iff
csInf_le'
mod_lt
LT.lt.trans_le
Ne.bot_lt
LE.le.not_gt
add_zero
zero_ne_one
bot_lt_of_lt
left_eq_zero_of_add_eq_zero
le_imp_le_of_le_of_le
mul_le_mul_right
le_self_add
add_lt_add_right
instAddLeftStrictMono
mul_succ
add_succ
zero_le_one
pred_le_iff_le_succ
Set.mem_setOf
lt_imp_lt_of_le_imp_le
AddMonoidWithOne.toNatCast
addMonoidWithOne
lt_omega0
one_lt_omega0
natCast_succ
lt_mul_succ_div
omega0_ne_zero
succ_ne_zero
mul_le_mul_left
omega0_pos
Order.lt_succ
lt_iff_lt_of_le_iff_le
Iff.not
csInf_mem
mod_one
Nat.instMonoid
pow_zero
Nat.cast_one
pow_succ
natCast_mul
lt_of_lt_of_le
nat_lt_omega0
Order.succ_le_of_lt
eq_of_forall_ge_iff
le_add_self
MulZeroClass.mul_zero
LE.le.eq_or_lt
mul_assoc
Order.IsNormal.le_iff_forall_le
Order.IsNormal.comp
isNormal_add_right
isNormal_mul_right
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
add_sub_cancel_of_le
le_of_not_gt
not_le_of_gt
le_of_dvd
LT.lt.not_ge
iSup_le_iff
small_Iio
StrictMono.le_iff_le
Order.IsNormal.strictMono
LE.le.eq_or_lt'
Set.Elem
Set.Iio
Set
Set.instMembership
limitRecOn_limit
StrictMono.lt_iff_lt
mul_lt_mul_of_le_of_lt_of_nonneg_of_pos
MulRightMono.toMulPosMono
le_of_lt
LT.lt.bot_lt
MulZeroClass.zero_mul
LT.lt.pos
mul_add_one
leftDistribClass
add_lt_add_iff_left
instAddLeftReflectLT
Order.add_one_le_of_lt
le_mul_left
Nat.cast_zero
Nat.cast_succ
add_one_eq_succ
one_mul
mul_pos
StrictMono.injective
limitRecOn_succ
sub_zero
limitRecOn_zero
StrictMono.le_apply
succ_pred_eq_iff_not_isSuccPrelimit
Order.not_isSuccPrelimit_iff'
le_csInf_iff''
sub_eq_zero_iff_le
sub
sub_le_self
---
β Back to Index