Documentation Verification Report

Exponential

πŸ“ Source: Mathlib/SetTheory/Ordinal/Exponential.lean

Statistics

MetricCount
DefinitionsinstPow
1
Theoremsadd_log_le_log_mul, div_opow_log_lt, div_opow_log_pos, iSup_pow, iSup_pow_natCast, isNormal_opow, isSuccLimit_opow, isSuccLimit_opow_left, le_log_of_opow_le, left_le_opow, left_lt_opow, log_def, log_eq_iff, log_eq_zero, log_le_self, log_mod_opow_log_lt_log_self, log_mono_right, log_of_left_le_one, log_one_left, log_one_right, log_opow, log_opow_mul, log_opow_mul_add, log_pos, log_zero_left, log_zero_right, lt_log_of_lt_opow, lt_omega0_opow, lt_omega0_opow_succ, lt_opow_iff_log_lt, lt_opow_iff_log_lt', lt_opow_of_isSuccLimit, lt_opow_of_log_lt, lt_opow_succ_log_self, mod_opow_log_lt_self, natCast_opow, natCast_pow, omega0_opow_mul_nat_lt, one_opow, opow_add, opow_dvd_opow, opow_dvd_opow_iff, opow_eq_zero, opow_le_iff_le_log, opow_le_iff_le_log', opow_le_of_isSuccLimit, opow_le_of_le_log, opow_le_opow, opow_le_opow_iff_right, opow_le_opow_left, opow_le_opow_right, opow_limit, opow_log_le_self, opow_lt_opow_iff_right, opow_lt_opow_left_of_succ, opow_mul, opow_mul_add_lt_opow, opow_mul_add_lt_opow_mul, opow_mul_add_lt_opow_mul_succ, opow_mul_add_lt_opow_succ, opow_mul_add_pos, opow_natCast, opow_ne_zero, opow_one, opow_one_add, opow_pos, opow_right_inj, opow_succ, opow_zero, right_le_opow, succ_log_def, zero_opow, zero_opow', zero_opow_le
74
Total75

Ordinal

Definitions

NameCategoryTheorems
instPow πŸ“–CompOp
116 mathmath: opow_mul, opow_le_opow_right, lt_omega0_opow_succ, iSup_pow_natCast, opow_one, invVeblenβ‚‚_eq_iff, le_invVeblenβ‚‚_iff, log_def, opow_omega0, CNF_foldr, principal_opow_ord, epsilon_eq_deriv, opow_add, div_opow_log_pos, isSuccLimit_opow_left, left_lt_opow, opow_mul_add_pos, principal_opow_omega0, isSuccLimit_opow, invVeblenβ‚‚_le_iff, card_omega0_opow, iSup_pow, zero_opow', eq_zero_or_opow_omega0_le_of_mul_eq_right, CNF_ne_zero, opow_log_le_self, right_le_opow, log_opow_mul, natCast_opow, opow_one_add, opow_dvd_opow, opow_le_opow_iff_right, veblen_opow_eq_opow_iff, succ_log_def, div_opow_log_lt, lt_epsilon_zero, iterate_omega0_opow_lt_epsilon0, lt_opow_succ_log_self, log_opow, ONote.repr_scale, IsInitial.principal_opow, veblen_zero, isNormal_opow, one_opow, opow_limit, mul_eq_right_iff_opow_omega0_dvd, ONote.omega0_le_oadd, principal_add_iff_zero_or_omega0_opow, zero_opow_le, epsilon_succ_eq_nfp, card_opow_le_of_omega0_le_right, card_opow_omega0, opow_dvd_opow_iff, mem_range_veblen_iff_le_invVeblen₁, ONote.split_add_lt, natCast_opow_omega0, mod_opow_log_lt_self, mul_eq_opow_log_succ, veblen_invVeblen₁_invVeblenβ‚‚, lt_omega0_opow, ONote.repr_opow, log_eq_iff, CNF.foldr, lt_opow_iff_log_lt', log_mod_opow_log_lt_log_self, epsilon0_eq_nfp, epsilon_zero_eq_nfp, veblen_mem_range_opow, card_opow_eq_of_omega0_le_right, CNF.rec_pos, lt_opow_of_log_lt, deriv_mul_eq_opow_omega0_mul, opow_natCast, opow_le_opow, opow_zero, opow_lt_veblen_opow_iff, CNFRec_pos, card_opow_le_of_omega0_le_left, mul_le_right_iff_opow_omega0_dvd, Mathlib.Meta.NormNum.isNat_ordinalOPow, card_opow_eq_of_omega0_le_left, principal_mul_omega0_opow_opow, principal_opow_omega, lt_opow_of_isSuccLimit, omega0_opow_mul_nat_lt, CNF.ne_zero, invVeblenβ‚‚_lt_iff, NONote.repr_opow, opow_lt_opow_iff_right, invVeblenβ‚‚_lt, lt_invVeblenβ‚‚_iff, veblen_eq_opow_iff, principal_add_omega0_opow, nfp_mul_one, opow_succ, veblen_zero_apply, opow_le_iff_le_log, opow_lt_opow_left_of_succ, ONote.scale_opowAux, opow_right_inj, iterate_omega0_opow_lt_epsilon_zero, principal_add_opow_of_principal_add, zero_opow, card_opow_le, opow_pos, opow_le_of_le_log, opow_le_iff_le_log', opow_le_opow_left, opow_le_of_isSuccLimit, left_le_opow, ONote.NFBelow.repr_lt, principal_mul_iff_le_two_or_omega0_opow_opow, lt_epsilon0, omega0_opow_epsilon, lt_opow_iff_log_lt, opow_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
add_log_le_log_mul πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
log
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”lt_or_ge
opow_le_iff_le_log
mul_ne_zero
noZeroDivisors
opow_add
mul_le_mul'
mulLeftMono
mulRightMono
opow_log_le_self
log_of_left_le_one
zero_add
le_rfl
div_opow_log_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
div
instPow
log
β€”div_lt
LT.lt.ne'
opow_pos
LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
opow_succ
lt_opow_succ_log_self
div_opow_log_pos πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
div
instPow
log
β€”eq_zero_or_pos
canonicallyOrderedAdd
log_zero_left
opow_zero
div_one
pos_iff_ne_zero
div_pos
opow_ne_zero
LT.lt.ne'
opow_log_le_self
iSup_pow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Monoid.toNatPow
monoid
instPow
omega0
β€”iSup_pow_natCast
iSup_pow_natCast πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Monoid.toNatPow
monoid
instPow
omega0
β€”LE.le.lt_or_eq
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
opow_natCast
apply_omega0_of_isNormal
isNormal_opow
one_pow
ciSup_const
one_opow
isNormal_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Order.IsNormal
instLinearOrder
instPow
β€”LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
Order.IsNormal.of_succ_lt
wellFoundedLT
opow_succ
mul_one
mul_lt_mul_of_pos_left
instPosMulStrictMono
opow_pos
opow_le_of_isSuccLimit
LT.lt.ne'
isSuccLimit_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Order.IsSuccLimit
instPowβ€”Order.IsNormal.map_isSuccLimit
isNormal_opow
isSuccLimit_opow_left πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
instPowβ€”zero_or_succ_or_isSuccLimit
opow_succ
isSuccLimit_mul
opow_pos
Order.IsSuccLimit.bot_lt
isSuccLimit_opow
one_lt_of_isSuccLimit
le_log_of_opow_le πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
instPow
logβ€”eq_or_ne
LT.lt.asymm
zero_lt_one
instZeroLEOneClass
instNeZeroOne
opow_eq_zero
nonpos_iff_eq_zero
canonicallyOrderedAdd
opow_le_iff_le_log
left_le_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
instPow
β€”opow_one
le_or_gt
lt_or_eq_of_le
lt_one_iff_zero
zero_opow
one_ne_zero
zero_le
canonicallyOrderedAdd
one_opow
le_refl
opow_le_opow_iff_right
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
left_lt_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPowβ€”opow_one
opow_lt_opow_iff_right
log_def πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
log
pred
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
setOf
instPow
β€”β€”
log_eq_iff πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
log
Preorder.toLE
instPow
Order.succ
instSuccOrder
β€”opow_log_le_self
lt_opow_succ_log_self
le_antisymm
Order.lt_succ_iff
instNoMaxOrder
lt_opow_iff_log_lt
opow_le_iff_le_log
log_eq_zero πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
log
zero
β€”eq_or_ne
log_zero_right
le_or_gt
le_one_iff
log_zero_left
log_one_left
nonpos_iff_eq_zero
canonicallyOrderedAdd
Order.lt_succ_iff
instNoMaxOrder
succ_zero
lt_opow_iff_log_lt
opow_one
log_le_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
log
β€”eq_or_ne
log_zero_right
le_refl
lt_or_ge
LE.le.trans
right_le_opow
opow_log_le_self
log_of_left_le_one
canonicallyOrderedAdd
log_mod_opow_log_lt_log_self πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
log
mod
instPow
β€”eq_or_ne
log_zero_right
log_pos
one_le_iff_ne_zero
LE.le.trans
LT.lt.le
Order.succ_le_iff
instNoMaxOrder
succ_log_def
csInf_le'
mod_lt
pos_iff_ne_zero
canonicallyOrderedAdd
opow_pos
LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
log_mono_right πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
logβ€”eq_or_ne
log_zero_right
canonicallyOrderedAdd
lt_or_ge
opow_le_iff_le_log
LT.lt.ne'
LT.lt.trans_le
Ne.bot_lt
LE.le.trans
opow_log_le_self
log_of_left_le_one
le_refl
log_of_left_le_one πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
log
zero
β€”LE.le.not_gt
log_one_left πŸ“–mathematicalβ€”log
Ordinal
one
zero
β€”log_of_left_le_one
le_rfl
log_one_right πŸ“–mathematicalβ€”log
Ordinal
one
zero
β€”lt_or_ge
log_eq_zero
log_of_left_le_one
log_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
log
instPow
β€”mul_one
log_one_right
add_zero
log_opow_mul
zero_ne_one
instNeZeroOne
log_opow_mul πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
log
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
add
β€”add_zero
log_opow_mul_add
opow_pos
bot_lt_of_lt
log_opow_mul_add πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPow
log
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”log_eq_iff
mul_ne_zero
noZeroDivisors
opow_ne_zero
LT.lt.ne'
bot_lt_of_lt
left_eq_zero_of_add_eq_zero
opow_add
le_imp_le_of_le_of_le
mul_le_mul_right
mulLeftMono
opow_log_le_self
le_refl
le_self_add
canonicallyOrderedAdd
LT.lt.trans_le
add_lt_add_right
instAddLeftStrictMono
mul_succ
add_succ
Order.succ_le_iff
instNoMaxOrder
lt_opow_succ_log_self
log_pos πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
zero
log
β€”Order.succ_le_iff
instNoMaxOrder
succ_zero
opow_le_iff_le_log
opow_one
log_zero_left πŸ“–mathematicalβ€”log
Ordinal
zero
β€”log_of_left_le_one
zero_le_one
instZeroLEOneClass
log_zero_right πŸ“–mathematicalβ€”log
Ordinal
zero
β€”lt_or_ge
log_def
nonpos_iff_eq_zero
canonicallyOrderedAdd
pred_le_iff_le_succ
succ_zero
csInf_le'
Set.mem_setOf
opow_one
bot_lt_of_lt
log_of_left_le_one
lt_log_of_lt_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
logβ€”lt_imp_lt_of_le_imp_le
opow_le_of_le_log
lt_omega0_opow πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”lt_log_of_lt_opow
lt_omega0
div_opow_log_lt
one_lt_omega0
natCast_succ
lt_mul_succ_div
opow_ne_zero
omega0_ne_zero
LT.lt.trans
omega0_opow_mul_nat_lt
lt_omega0_opow_succ πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
Order.succ
instSuccOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”lt_omega0_opow
succ_ne_zero
LT.lt.trans_le
le_imp_le_of_le_of_le
mul_le_mul_left
mulRightMono
opow_le_opow
le_refl
Order.lt_succ_iff
instNoMaxOrder
omega0_pos
LT.lt.trans
omega0_opow_mul_nat_lt
Order.lt_succ
lt_opow_iff_log_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPow
log
β€”lt_iff_lt_of_le_iff_le
opow_le_iff_le_log
lt_opow_iff_log_lt' πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPow
log
β€”lt_iff_lt_of_le_iff_le
opow_le_iff_le_log'
lt_opow_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
instPow
β€”Iff.not
opow_le_of_isSuccLimit
lt_opow_of_log_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
log
instPowβ€”lt_imp_lt_of_le_imp_le
le_log_of_opow_le
lt_opow_succ_log_self πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPow
Order.succ
instSuccOrder
log
β€”eq_or_ne
opow_pos
LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
succ_log_def
csInf_mem
wellFoundedLT
mod_opow_log_lt_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
mod
instPow
log
β€”eq_or_ne
log_zero_left
opow_zero
mod_one
pos_iff_ne_zero
canonicallyOrderedAdd
LT.lt.trans_le
mod_lt
opow_ne_zero
opow_log_le_self
natCast_opow πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
Monoid.toNatPow
Nat.instMonoid
instPow
β€”natCast_pow
opow_natCast
natCast_pow πŸ“–mathematicalβ€”Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
Monoid.toNatPow
Nat.instMonoid
monoid
β€”pow_zero
Nat.cast_one
pow_succ
natCast_mul
omega0_opow_mul_nat_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
omega0
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”lt_of_lt_of_le
opow_succ
mul_lt_mul_of_pos_left
instPosMulStrictMono
nat_lt_omega0
opow_pos
omega0_pos
opow_le_opow_right
Order.succ_le_of_lt
one_opow πŸ“–mathematicalβ€”Ordinal
instPow
one
β€”opow_zero
opow_succ
mul_one
eq_of_forall_ge_iff
opow_le_of_isSuccLimit
one_ne_zero
Order.IsSuccLimit.bot_lt
opow_add πŸ“–mathematicalβ€”Ordinal
instPow
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”eq_zero_or_pos
canonicallyOrderedAdd
add_zero
opow_zero
mul_one
LT.lt.ne'
LT.lt.trans_le
le_add_self
zero_opow
MulZeroClass.mul_zero
LE.le.eq_or_lt
one_le_iff_ne_zero
one_opow
add_succ
opow_succ
mul_assoc
eq_of_forall_ge_iff
Order.IsNormal.le_iff_forall_le
Order.IsNormal.comp
isNormal_opow
isNormal_add_right
isNormal_mul_right
opow_pos
pos_iff_ne_zero
opow_dvd_opow πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
instPow
β€”opow_add
add_sub_cancel_of_le
opow_dvd_opow_iff πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
instPow
Preorder.toLE
β€”le_of_not_gt
not_le_of_gt
opow_lt_opow_iff_right
le_of_dvd
opow_ne_zero
one_le_iff_ne_zero
LT.lt.le
opow_dvd_opow
opow_eq_zero πŸ“–mathematicalβ€”Ordinal
instPow
zero
β€”opow_zero
instNeZeroOne
zero_opow
opow_le_iff_le_log πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
instPow
log
β€”le_of_not_gt
LT.lt.not_ge
lt_opow_succ_log_self
LE.le.trans
opow_le_opow_iff_right
Order.succ_le_of_lt
opow_log_le_self
opow_le_iff_le_log' πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
instPow
log
β€”eq_or_ne
canonicallyOrderedAdd
LT.lt.ne'
LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
log_zero_right
opow_le_iff_le_log
opow_le_of_isSuccLimit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
instPow
β€”opow_limit
iSup_le_iff
small_Iio
opow_le_of_le_log πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
log
instPowβ€”le_or_gt
LE.le.not_gt
log_of_left_le_one
pos_iff_ne_zero
canonicallyOrderedAdd
opow_le_iff_le_log'
opow_le_opow πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Preorder.toLT
zero
instPowβ€”LE.le.trans
opow_le_opow_left
opow_le_opow_right
opow_le_opow_iff_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
instPow
β€”StrictMono.le_iff_le
Order.IsNormal.strictMono
isNormal_opow
opow_le_opow_left πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instPowβ€”opow_zero
zero_opow
canonicallyOrderedAdd
opow_succ
mul_le_mul'
mulLeftMono
mulRightMono
opow_le_of_isSuccLimit
LE.le.trans
opow_le_opow_right
LT.lt.trans_le
pos_iff_ne_zero
LT.lt.le
opow_le_opow_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
instPowβ€”LE.le.eq_or_lt'
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
one_opow
opow_le_opow_iff_right
opow_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
instPow
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
β€”limitRecOn_limit
opow_log_le_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instPow
log
β€”eq_or_ne
LE.le.trans
zero_opow_le
one_le_iff_ne_zero
lt_or_eq_of_le
le_of_not_gt
LT.lt.not_ge
Order.lt_succ
instNoMaxOrder
csInf_le'
succ_log_def
one_opow
opow_lt_opow_iff_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPowβ€”StrictMono.lt_iff_lt
Order.IsNormal.strictMono
isNormal_opow
opow_lt_opow_left_of_succ πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
Order.succ
instSuccOrder
β€”opow_succ
mul_lt_mul_of_le_of_lt_of_nonneg_of_pos
instPosMulStrictMono
MulRightMono.toMulPosMono
mulRightMono
opow_le_opow_left
le_of_lt
zero_le
canonicallyOrderedAdd
opow_pos
LT.lt.bot_lt
opow_mul πŸ“–mathematicalβ€”Ordinal
instPow
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”eq_zero_or_pos
canonicallyOrderedAdd
MulZeroClass.zero_mul
opow_zero
one_opow
eq_or_ne
LT.lt.ne'
MulZeroClass.mul_zero
zero_opow
noZeroDivisors
LE.le.eq_or_lt
one_le_iff_ne_zero
mul_succ
opow_add
opow_succ
eq_of_forall_ge_iff
Order.IsNormal.le_iff_forall_le
Order.IsNormal.comp
isNormal_opow
isNormal_mul_right
opow_le_of_isSuccLimit
opow_ne_zero
opow_mul_add_lt_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”LT.lt.trans_le
opow_mul_add_lt_opow_mul
opow_succ
opow_le_opow_right
LT.lt.pos
canonicallyOrderedAdd
Order.succ_le_of_lt
opow_mul_add_lt_opow_mul πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”lt_of_lt_of_le
mul_add_one
leftDistribClass
add_lt_add_iff_left
instAddLeftStrictMono
instAddLeftReflectLT
le_imp_le_of_le_of_le
mul_le_mul_right
mulLeftMono
Order.add_one_le_of_lt
le_refl
opow_mul_add_lt_opow_mul_succ πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
instSuccOrder
β€”opow_mul_add_lt_opow_mul
Order.lt_succ
instNoMaxOrder
opow_mul_add_lt_opow_succ πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.succ
instSuccOrder
β€”opow_mul_add_lt_opow
Order.lt_succ
instNoMaxOrder
opow_mul_add_pos πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
β€”LT.lt.trans_le
opow_pos
pos_iff_ne_zero
canonicallyOrderedAdd
LE.le.trans
le_mul_left
le_self_add
opow_natCast πŸ“–mathematicalβ€”Ordinal
instPow
AddMonoidWithOne.toNatCast
addMonoidWithOne
Monoid.toNatPow
monoid
β€”Nat.cast_zero
opow_zero
pow_zero
Nat.cast_succ
add_one_eq_succ
opow_succ
pow_succ
opow_ne_zero πŸ“–β€”β€”β€”β€”pos_iff_ne_zero
canonicallyOrderedAdd
opow_pos
opow_one πŸ“–mathematicalβ€”Ordinal
instPow
one
β€”succ_zero
opow_succ
opow_zero
one_mul
opow_one_add πŸ“–mathematicalβ€”Ordinal
instPow
add
one
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”opow_add
opow_one
opow_pos πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
instPowβ€”opow_zero
instZeroLEOneClass
instNeZeroOne
opow_succ
mul_pos
instPosMulStrictMono
lt_opow_of_isSuccLimit
pos_iff_ne_zero
canonicallyOrderedAdd
Order.IsSuccLimit.bot_lt
opow_right_inj πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
instPowβ€”StrictMono.injective
Order.IsNormal.strictMono
isNormal_opow
opow_succ πŸ“–mathematicalβ€”Ordinal
instPow
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”eq_or_ne
zero_opow
succ_ne_zero
MulZeroClass.mul_zero
limitRecOn_succ
opow_zero πŸ“–mathematicalβ€”Ordinal
instPow
zero
one
β€”eq_or_ne
zero_opow'
sub_zero
limitRecOn_zero
right_le_opow πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Preorder.toLE
instPow
β€”StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
isNormal_opow
succ_log_def πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Order.succ
instSuccOrder
log
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
setOf
instPow
β€”csInf_mem
wellFoundedLT
zero_or_succ_or_isSuccLimit
LE.le.not_gt
one_le_iff_ne_zero
opow_zero
log_def
succ_pred_eq_iff_not_isSuccPrelimit
Order.not_isSuccPrelimit_iff'
instNoMaxOrder
lt_opow_of_isSuccLimit
LT.lt.ne'
LT.lt.trans
zero_lt_one
instZeroLEOneClass
instNeZeroOne
LT.lt.not_ge
le_csInf_iff''
le_rfl
zero_opow πŸ“–mathematicalβ€”Ordinal
instPow
zero
β€”zero_opow'
sub_eq_zero_iff_le
one_le_iff_ne_zero
zero_opow' πŸ“–mathematicalβ€”Ordinal
instPow
zero
sub
one
β€”β€”
zero_opow_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instPow
zero
one
β€”zero_opow'
sub_le_self

---

← Back to Index