π Source: Mathlib/SetTheory/Ordinal/FixedPoint.lean
deriv
derivFamily
nfp
nfpFamily
apply_le_nfp
apply_lt_nfp
deriv_fp
fp_iff_deriv
le_iff_deriv
nfp_fp
nfp_le_apply
add_eq_right_iff_mul_omega0_le
add_le_right_iff_mul_omega0_le
apply_le_nfpFamily
apply_lt_nfpFamily
apply_lt_nfpFamily_iff
derivFamily_eq_enumOrd
derivFamily_fp
derivFamily_limit
derivFamily_strictMono
derivFamily_succ
derivFamily_zero
deriv_add_eq_mul_omega0_add
deriv_eq_derivFamily
deriv_eq_enumOrd
deriv_eq_id_of_nfp_eq_id
deriv_id_of_nfp_id
deriv_limit
deriv_mul_eq_opow_omega0_mul
deriv_strictMono
deriv_succ
deriv_zero
deriv_zero_left
deriv_zero_right
eq_zero_or_opow_omega0_le_of_mul_eq_right
foldr_le_nfpFamily
fp_iff_derivFamily
iSup_iterate_eq_nfp
isNormal_deriv
isNormal_derivFamily
iterate_le_nfp
iterate_lt_nfp
le_iff_derivFamily
le_nfp
le_nfpFamily
lt_nfpFamily_iff
lt_nfp_iff
mem_range_deriv
mem_range_derivFamily
mul_eq_right_iff_opow_omega0_dvd
mul_le_right_iff_opow_omega0_dvd
nfpFamily_eq_self
nfpFamily_fp
nfpFamily_le
nfpFamily_le_apply
nfpFamily_le_fp
nfpFamily_le_iff
nfpFamily_monotone
nfp_add_eq_mul_omega0
nfp_add_zero
nfp_eq_nfpFamily
nfp_eq_self
nfp_id
nfp_le
nfp_le_fp
nfp_le_iff
nfp_monotone
nfp_mul_eq_opow_omega0
nfp_mul_one
nfp_mul_opow_omega0_add
nfp_mul_zero
nfp_zero
nfp_zero_left
not_bddAbove_fp
not_bddAbove_fp_family
IsNormal.deriv_fp
epsilon_eq_deriv
veblenWith_succ
IsNormal.fp_iff_deriv
veblen_succ
IsNormal.le_iff_deriv
Cardinal.deriv_lt_ord
veblen_of_ne_zero
Cardinal.derivFamily_lt_ord
Cardinal.derivFamily_lt_ord_lift
veblenWith_of_ne_zero
IsNormal.apply_le_nfp
gamma_zero_eq_nfp
IsNormal.nfp_le_apply
IsNormal.apply_lt_nfp
nfp_lt_ord
epsilon_succ_eq_nfp
epsilon0_eq_nfp
epsilon_zero_eq_nfp
gamma0_eq_nfp
Cardinal.nfp_lt_ord_of_isRegular
nfp_le_of_principal
gamma_succ_eq_nfp
IsNormal.nfp_fp
Cardinal.nfpFamily_lt_ord_of_isRegular
nfpFamily_lt_ord_lift
nfpFamily_lt_ord
Cardinal.nfpFamily_lt_ord_lift_of_isRegular
Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
isNormal_add_right
Order.IsNormal.monotone
zero_le
canonicallyOrderedAdd
add_sub_cancel_of_le
add_assoc
mul_one_add
leftDistribClass
one_add_omega0
LE.le.ge_iff_eq'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
Order.IsNormal
instLinearOrder
LE.le.trans
Preorder.toLT
UnivLE.small
univLE_of_max
UnivLE.self
LE.le.trans_lt
enumOrd
Set.iInter
Function.fixedPoints
eq_enumOrd
Set.range_eq_iff
Set.mem_iInter
Set.Nonempty.to_subtype
Order.IsSuccLimit.nonempty_Iio
Order.IsNormal.map_iSup
bddAbove_of_small
small_range
small_Iio
eq_of_forall_ge_iff
iSup_le_iff
Order.IsSuccLimit
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
limitRecOn_limit
StrictMono
Order.succ
instSuccOrder
limitRecOn_succ
zero
limitRecOn_zero
Order.IsNormal.ext
bot_eq_zero
add_zero
add_succ
le_self_add
Order.le_succ
Set.iInter_const
Order.IsNormal.id
bot_eq_zero'
instNoMaxOrder
instPow
isNormal_mul_right
opow_pos
MulZeroClass.mul_zero
zero_lt_one
instZeroLEOneClass
instNeZeroOne
Order.one_le_iff_pos
Pi.instZero
eq_zero_or_pos
zero_opow
omega0_ne_zero
one_le_iff_ne_zero
le_of_eq
le_iSup
smallList
Nat.iterate
le_antisymm
List.foldr_const
iSup_le
Order.IsNormal.of_succ_lt
Order.succ_le_iff
Set.image_eq_range
isLUB_ciSup
LT.lt.trans_le
StrictMono.iterate
Function.iterate_succ_apply
le_or_gt
Order.succ_le_of_lt
eq_or_lt_of_le
not_le
le_of_not_ge
Eq.le
lt_iSup_iff
Set.range
Set.mem_range
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.zero_mul
zero_dvd_iff
dvd_iff_mod_eq_zero
add_left_cancel_iff
instIsLeftCancelAdd
opow_one_add
mul_assoc
mul_add
div_add_mod
not_lt_of_ge
mod_lt
opow_ne_zero
pos_iff_ne_zero
LE.le.antisymm
List.foldr_fixed'
le_refl
nfpFamily.eq_1
Mathlib.Tactic.Contrapose.contrapose_iffβ
Monotone
List.foldr_monotone
Nat.cast_zero
Function.iterate_zero_apply
Function.iterate_succ_apply'
Nat.cast_add
Nat.cast_one
Function.iterate_id
ciSup_const
le_iff_le_iff_lt_iff_lt
nonpos_iff_eq_zero
one
iSup_pow_natCast
pow_zero
pow_add
pow_one
mul_succ
add_le_add_right
instAddLeftMono
mul_le_mul_right
mulLeftMono
add_lt_add_right
instAddLeftStrictMono
mul_lt_mul_iff_rightβ
instPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Function.iterate_succ'
BddAbove
not_bddAbove_iff
Order.lt_succ
Ordinal.instLinearOrder
Ordinal.partialOrder
Ordinal.nfp
Ordinal.apply_le_nfp
Ordinal.apply_lt_nfp
Ordinal.deriv
Ordinal.deriv_fp
Ordinal.fp_iff_deriv
Ordinal.le_iff_deriv
Ordinal.nfp_fp
Ordinal.nfp_le_apply
---
β Back to Index