Documentation Verification Report

FixedPoint

πŸ“ Source: Mathlib/SetTheory/Ordinal/FixedPoint.lean

Statistics

MetricCount
Definitionsderiv, derivFamily, nfp, nfpFamily
4
Theoremsapply_le_nfp, apply_lt_nfp, deriv_fp, fp_iff_deriv, le_iff_deriv, nfp_fp, nfp_le_apply, add_eq_right_iff_mul_omega0_le, add_le_right_iff_mul_omega0_le, apply_le_nfp, apply_le_nfpFamily, apply_lt_nfp, apply_lt_nfpFamily, apply_lt_nfpFamily_iff, derivFamily_eq_enumOrd, derivFamily_fp, derivFamily_limit, derivFamily_strictMono, derivFamily_succ, derivFamily_zero, deriv_add_eq_mul_omega0_add, deriv_eq_derivFamily, deriv_eq_enumOrd, deriv_eq_id_of_nfp_eq_id, deriv_fp, deriv_id_of_nfp_id, deriv_limit, deriv_mul_eq_opow_omega0_mul, deriv_strictMono, deriv_succ, deriv_zero, deriv_zero_left, deriv_zero_right, eq_zero_or_opow_omega0_le_of_mul_eq_right, foldr_le_nfpFamily, fp_iff_deriv, fp_iff_derivFamily, iSup_iterate_eq_nfp, isNormal_deriv, isNormal_derivFamily, iterate_le_nfp, iterate_lt_nfp, le_iff_deriv, le_iff_derivFamily, le_nfp, le_nfpFamily, lt_nfpFamily_iff, lt_nfp_iff, mem_range_deriv, mem_range_derivFamily, mul_eq_right_iff_opow_omega0_dvd, mul_le_right_iff_opow_omega0_dvd, nfpFamily_eq_self, nfpFamily_fp, nfpFamily_le, nfpFamily_le_apply, nfpFamily_le_fp, nfpFamily_le_iff, nfpFamily_monotone, nfp_add_eq_mul_omega0, nfp_add_zero, nfp_eq_nfpFamily, nfp_eq_self, nfp_fp, nfp_id, nfp_le, nfp_le_apply, nfp_le_fp, nfp_le_iff, nfp_monotone, nfp_mul_eq_opow_omega0, nfp_mul_one, nfp_mul_opow_omega0_add, nfp_mul_zero, nfp_zero, nfp_zero_left, not_bddAbove_fp, not_bddAbove_fp_family
78
Total82

Ordinal

Definitions

NameCategoryTheorems
deriv πŸ“–CompOp
24 mathmath: deriv_add_eq_mul_omega0_add, IsNormal.deriv_fp, deriv_strictMono, epsilon_eq_deriv, deriv_succ, deriv_fp, deriv_limit, isNormal_deriv, deriv_eq_derivFamily, deriv_zero, deriv_eq_enumOrd, deriv_id_of_nfp_id, deriv_zero_left, deriv_mul_eq_opow_omega0_mul, veblenWith_succ, IsNormal.fp_iff_deriv, mem_range_deriv, veblen_succ, deriv_zero_right, IsNormal.le_iff_deriv, deriv_eq_id_of_nfp_eq_id, Cardinal.deriv_lt_ord, fp_iff_deriv, le_iff_deriv
derivFamily πŸ“–CompOp
15 mathmath: fp_iff_derivFamily, le_iff_derivFamily, veblen_of_ne_zero, derivFamily_succ, derivFamily_strictMono, deriv_eq_derivFamily, isNormal_derivFamily, Cardinal.derivFamily_lt_ord, derivFamily_limit, Cardinal.derivFamily_lt_ord_lift, derivFamily_zero, mem_range_derivFamily, veblenWith_of_ne_zero, derivFamily_fp, derivFamily_eq_enumOrd
nfp πŸ“–CompOp
39 mathmath: IsNormal.apply_le_nfp, apply_le_nfp, gamma_zero_eq_nfp, IsNormal.nfp_le_apply, nfp_le_fp, nfp_fp, nfp_mul_opow_omega0_add, deriv_succ, apply_lt_nfp, nfp_mul_eq_opow_omega0, iterate_le_nfp, IsNormal.apply_lt_nfp, le_nfp, nfp_mul_zero, nfp_le_iff, nfp_lt_ord, nfp_le_apply, nfp_zero, epsilon_succ_eq_nfp, nfp_add_eq_mul_omega0, epsilon0_eq_nfp, epsilon_zero_eq_nfp, gamma0_eq_nfp, nfp_zero_left, nfp_monotone, nfp_id, lt_nfp_iff, nfp_eq_nfpFamily, nfp_le, nfp_mul_one, deriv_zero_right, nfp_add_zero, Cardinal.nfp_lt_ord_of_isRegular, iSup_iterate_eq_nfp, nfp_le_of_principal, iterate_lt_nfp, nfp_eq_self, gamma_succ_eq_nfp, IsNormal.nfp_fp
nfpFamily πŸ“–CompOp
19 mathmath: Cardinal.nfpFamily_lt_ord_of_isRegular, nfpFamily_eq_self, apply_lt_nfpFamily_iff, lt_nfpFamily_iff, foldr_le_nfpFamily, nfpFamily_lt_ord_lift, nfpFamily_le_fp, derivFamily_succ, nfpFamily_lt_ord, apply_le_nfpFamily, nfpFamily_monotone, Cardinal.nfpFamily_lt_ord_lift_of_isRegular, nfpFamily_le_iff, derivFamily_zero, nfp_eq_nfpFamily, nfpFamily_le_apply, nfpFamily_le, le_nfpFamily, nfpFamily_fp

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_right_iff_mul_omega0_le πŸ“–mathematicalβ€”Ordinal
add
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
β€”nfp_add_zero
deriv_zero_right
mem_range_deriv
isNormal_add_right
Order.IsNormal.monotone
isNormal_deriv
zero_le
canonicallyOrderedAdd
add_sub_cancel_of_le
add_assoc
mul_one_add
leftDistribClass
one_add_omega0
add_le_right_iff_mul_omega0_le πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
β€”add_eq_right_iff_mul_omega0_le
LE.le.ge_iff_eq'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
isNormal_add_right
apply_le_nfp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfp
β€”LE.le.trans
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
nfp_fp
Order.IsNormal.monotone
apply_le_nfpFamily πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”LE.le.trans
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
nfpFamily_fp
Order.IsNormal.monotone
apply_lt_nfp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nfp
β€”apply_lt_nfpFamily_iff
UnivLE.small
univLE_of_max
UnivLE.self
apply_lt_nfpFamily πŸ“–β€”Order.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”β€”lt_nfpFamily_iff
Order.IsNormal.strictMono
apply_lt_nfpFamily_iff πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”lt_nfpFamily_iff
LE.le.trans_lt
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
apply_lt_nfpFamily
derivFamily_eq_enumOrd πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
derivFamily
enumOrd
Set.iInter
Function.fixedPoints
β€”eq_enumOrd
not_bddAbove_fp_family
Order.IsNormal.strictMono
isNormal_derivFamily
Set.range_eq_iff
derivFamily_fp
fp_iff_derivFamily
Set.mem_iInter
derivFamily_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
derivFamilyβ€”derivFamily_zero
nfpFamily_fp
derivFamily_succ
Set.Nonempty.to_subtype
Order.IsSuccLimit.nonempty_Iio
derivFamily_limit
Order.IsNormal.map_iSup
bddAbove_of_small
small_range
small_Iio
eq_of_forall_ge_iff
iSup_le_iff
derivFamily_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
derivFamily
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set
Set.instMembership
β€”limitRecOn_limit
derivFamily_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
derivFamily
β€”Order.IsNormal.strictMono
isNormal_derivFamily
derivFamily_succ πŸ“–mathematicalβ€”derivFamily
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
nfpFamily
β€”limitRecOn_succ
derivFamily_zero πŸ“–mathematicalβ€”derivFamily
Ordinal
zero
nfpFamily
β€”limitRecOn_zero
deriv_add_eq_mul_omega0_add πŸ“–mathematicalβ€”deriv
Ordinal
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
β€”Order.IsNormal.ext
wellFoundedLT
isNormal_deriv
isNormal_add_right
bot_eq_zero
deriv_zero_right
add_zero
nfp_add_zero
deriv_succ
add_succ
nfp_eq_self
add_eq_right_iff_mul_omega0_le
LE.le.trans
le_self_add
canonicallyOrderedAdd
Order.le_succ
deriv_eq_derivFamily πŸ“–mathematicalβ€”deriv
derivFamily
β€”β€”
deriv_eq_enumOrd πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
deriv
enumOrd
Function.fixedPoints
β€”Set.iInter_const
derivFamily_eq_enumOrd
UnivLE.small
univLE_of_max
UnivLE.self
deriv_eq_id_of_nfp_eq_id πŸ“–mathematicalnfp
Ordinal
derivβ€”Order.IsNormal.ext
wellFoundedLT
isNormal_deriv
Order.IsNormal.id
bot_eq_zero'
canonicallyOrderedAdd
deriv_zero_right
deriv_succ
instNoMaxOrder
deriv_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
derivβ€”derivFamily_fp
UnivLE.small
univLE_of_max
UnivLE.self
deriv_id_of_nfp_id πŸ“–mathematicalnfp
Ordinal
derivβ€”deriv_eq_id_of_nfp_eq_id
deriv_limit πŸ“–mathematicalOrder.IsSuccLimit
Ordinal
PartialOrder.toPreorder
partialOrder
deriv
iSup
Preorder.toLT
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”derivFamily_limit
deriv_mul_eq_opow_omega0_mul πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
deriv
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
omega0
β€”Order.IsNormal.ext
wellFoundedLT
isNormal_deriv
isNormal_mul_right
opow_pos
bot_eq_zero
deriv_zero_right
nfp_mul_zero
MulZeroClass.mul_zero
deriv_succ
nfp_mul_opow_omega0_add
zero_lt_one
instZeroLEOneClass
instNeZeroOne
Order.one_le_iff_pos
deriv_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
deriv
β€”derivFamily_strictMono
UnivLE.small
univLE_of_max
UnivLE.self
deriv_succ πŸ“–mathematicalβ€”deriv
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
nfp
β€”derivFamily_succ
deriv_zero πŸ“–mathematicalβ€”deriv
Pi.instZero
Ordinal
zero
β€”deriv_eq_id_of_nfp_eq_id
nfp_zero
deriv_zero_left πŸ“–mathematicalβ€”deriv
Pi.instZero
Ordinal
zero
β€”deriv_zero
deriv_zero_right πŸ“–mathematicalβ€”deriv
Ordinal
zero
nfp
β€”derivFamily_zero
eq_zero_or_opow_omega0_le_of_mul_eq_right πŸ“–mathematicalOrdinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
zero
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instPow
omega0
β€”eq_zero_or_pos
canonicallyOrderedAdd
zero_opow
omega0_ne_zero
zero_le
nfp_mul_one
nfp_le_fp
Order.IsNormal.monotone
isNormal_mul_right
one_le_iff_ne_zero
le_of_eq
foldr_le_nfpFamily πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”le_iSup
smallList
fp_iff_deriv πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
derivβ€”mem_range_deriv
fp_iff_derivFamily πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
derivFamilyβ€”le_of_eq
LE.le.ge_iff_eq'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
le_iff_derivFamily
iSup_iterate_eq_nfp πŸ“–mathematicalβ€”iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Nat.iterate
nfp
β€”le_antisymm
iSup_le_iff
UnivLE.small
univLE_of_max
UnivLE.self
List.foldr_const
le_iSup
smallList
iSup_le
isNormal_deriv πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
instLinearOrder
deriv
β€”isNormal_derivFamily
UnivLE.small
univLE_of_max
UnivLE.self
isNormal_derivFamily πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
instLinearOrder
derivFamily
β€”Order.IsNormal.of_succ_lt
wellFoundedLT
derivFamily_succ
Order.succ_le_iff
instNoMaxOrder
le_nfpFamily
derivFamily_limit
Set.image_eq_range
Set.Nonempty.to_subtype
Order.IsSuccLimit.nonempty_Iio
isLUB_ciSup
bddAbove_of_small
small_range
small_Iio
iterate_le_nfp πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Nat.iterate
nfp
β€”iSup_iterate_eq_nfp
le_iSup
UnivLE.small
univLE_of_max
UnivLE.self
iterate_lt_nfp πŸ“–mathematicalStrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLT
Nat.iterate
nfp
β€”LT.lt.trans_le
StrictMono.iterate
Function.iterate_succ_apply
iterate_le_nfp
le_iff_deriv πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
deriv
β€”le_iff_derivFamily
UnivLE.small
univLE_of_max
UnivLE.self
le_iff_derivFamily πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
derivFamily
β€”le_antisymm
derivFamily_zero
nfpFamily_le_fp
Order.IsNormal.monotone
zero_le
canonicallyOrderedAdd
le_or_gt
derivFamily_succ
Order.succ_le_of_lt
eq_or_lt_of_le
iSup_le_iff
small_Iio
not_le
derivFamily_limit
le_of_not_ge
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
isNormal_derivFamily
Eq.le
derivFamily_fp
le_nfp πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfp
β€”iterate_le_nfp
le_nfpFamily πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”foldr_le_nfpFamily
lt_nfpFamily_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”lt_iSup_iff
smallList
lt_nfp_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nfp
Nat.iterate
β€”iSup_iterate_eq_nfp
lt_iSup_iff
UnivLE.small
univLE_of_max
UnivLE.self
mem_range_deriv πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Set
Set.instMembership
Set.range
deriv
β€”Set.mem_range
LE.le.ge_iff_eq'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
le_iff_deriv
mem_range_derivFamily πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Set
Set.instMembership
Set.range
derivFamily
β€”fp_iff_derivFamily
mul_eq_right_iff_opow_omega0_dvd πŸ“–mathematicalβ€”Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
instPow
omega0
β€”eq_zero_or_pos
canonicallyOrderedAdd
MulZeroClass.zero_mul
zero_opow
omega0_ne_zero
zero_dvd_iff
dvd_iff_mod_eq_zero
eq_zero_or_opow_omega0_le_of_mul_eq_right
add_left_cancel_iff
instIsLeftCancelAdd
one_add_omega0
opow_one_add
mul_assoc
mul_add
leftDistribClass
div_add_mod
not_lt_of_ge
mod_lt
opow_ne_zero
pos_iff_ne_zero
mul_le_right_iff_opow_omega0_dvd πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
instPow
omega0
β€”mul_eq_right_iff_opow_omega0_dvd
LE.le.ge_iff_eq'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
isNormal_mul_right
nfpFamily_eq_self πŸ“–mathematicalβ€”nfpFamilyβ€”LE.le.antisymm
iSup_le
List.foldr_fixed'
le_refl
le_nfpFamily
nfpFamily_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
nfpFamilyβ€”nfpFamily.eq_1
Order.IsNormal.map_iSup
bddAbove_of_small
small_range
smallList
le_antisymm
iSup_le
le_iSup
LE.le.trans
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
nfpFamily_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfpFamilyβ€”iSup_le
nfpFamily_le_apply πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
apply_lt_nfpFamily_iff
nfpFamily_le_fp πŸ“–mathematicalMonotone
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
nfpFamilyβ€”iSup_le
LE.le.trans
nfpFamily_le_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfpFamily
β€”iSup_le_iff
smallList
nfpFamily_monotone πŸ“–mathematicalMonotone
Ordinal
PartialOrder.toPreorder
partialOrder
nfpFamilyβ€”nfpFamily_le
LE.le.trans
List.foldr_monotone
foldr_le_nfpFamily
nfp_add_eq_mul_omega0 πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
nfp
add
β€”le_antisymm
nfp_le_fp
Order.IsNormal.monotone
isNormal_add_right
mul_one_add
leftDistribClass
one_add_omega0
le_refl
nfp_add_zero
nfp_monotone
zero_le
canonicallyOrderedAdd
nfp_add_zero πŸ“–mathematicalβ€”nfp
Ordinal
add
zero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
β€”Nat.cast_zero
MulZeroClass.mul_zero
Function.iterate_zero_apply
Function.iterate_succ_apply'
Nat.cast_add
Nat.cast_one
mul_one_add
leftDistribClass
nfp_eq_nfpFamily πŸ“–mathematicalβ€”nfp
nfpFamily
β€”β€”
nfp_eq_self πŸ“–mathematicalβ€”nfpβ€”nfpFamily_eq_self
UnivLE.small
univLE_of_max
UnivLE.self
nfp_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
nfpβ€”nfpFamily_fp
UnivLE.small
univLE_of_max
UnivLE.self
nfp_id πŸ“–mathematicalβ€”nfp
Ordinal
β€”Function.iterate_id
ciSup_const
nfp_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Nat.iterate
nfpβ€”nfp_le_iff
nfp_le_apply πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfp
β€”le_iff_le_iff_lt_iff_lt
apply_lt_nfp
nfp_le_fp πŸ“–mathematicalMonotone
Ordinal
PartialOrder.toPreorder
partialOrder
Preorder.toLE
nfpβ€”nfpFamily_le_fp
nfp_le_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nfp
Nat.iterate
β€”iSup_iterate_eq_nfp
iSup_le_iff
UnivLE.small
univLE_of_max
UnivLE.self
nfp_monotone πŸ“–mathematicalMonotone
Ordinal
PartialOrder.toPreorder
partialOrder
nfpβ€”nfpFamily_monotone
UnivLE.small
univLE_of_max
UnivLE.self
nfp_mul_eq_opow_omega0 πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
instPow
omega0
nfp
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
β€”eq_zero_or_pos
canonicallyOrderedAdd
zero_opow
omega0_ne_zero
nonpos_iff_eq_zero
MulZeroClass.zero_mul
nfp_zero_left
le_antisymm
nfp_le_fp
Order.IsNormal.monotone
isNormal_mul_right
opow_one_add
one_add_omega0
le_refl
nfp_mul_one
nfp_monotone
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
nfp_mul_one πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
nfp
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
one
instPow
omega0
β€”iSup_iterate_eq_nfp
iSup_pow_natCast
pow_zero
Function.iterate_zero_apply
Function.iterate_succ_apply'
pow_add
pow_one
nfp_mul_opow_omega0_add πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
instPow
omega0
nfp
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
add
Order.succ
instSuccOrder
β€”le_antisymm
nfp_le_fp
Order.IsNormal.monotone
isNormal_mul_right
mul_succ
add_le_add_right
instAddLeftMono
mul_assoc
opow_one_add
one_add_omega0
le_refl
mul_eq_right_iff_opow_omega0_dvd
nfp_fp
mul_le_mul_right
mulLeftMono
le_nfp
LT.lt.trans_le
add_lt_add_right
instAddLeftStrictMono
Order.succ_le_iff
instNoMaxOrder
mul_lt_mul_iff_rightβ‚€
instPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
opow_pos
add_zero
nfp_mul_zero πŸ“–mathematicalβ€”nfp
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
zero
β€”nonpos_iff_eq_zero
canonicallyOrderedAdd
nfp_le_iff
le_refl
Function.iterate_succ_apply
MulZeroClass.mul_zero
nfp_zero πŸ“–mathematicalβ€”nfp
Pi.instZero
Ordinal
zero
β€”nfp_zero_left
nfp_zero_left πŸ“–mathematicalβ€”nfp
Pi.instZero
Ordinal
zero
β€”iSup_iterate_eq_nfp
LE.le.antisymm
iSup_le
le_refl
Function.iterate_succ'
canonicallyOrderedAdd
le_iSup
UnivLE.small
univLE_of_max
UnivLE.self
not_bddAbove_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
BddAbove
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Function.fixedPoints
β€”Set.iInter_const
not_bddAbove_fp_family
UnivLE.small
univLE_of_max
UnivLE.self
not_bddAbove_fp_family πŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
BddAbove
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Set.iInter
Function.fixedPoints
β€”not_bddAbove_iff
nfpFamily_fp
LT.lt.trans_le
Order.lt_succ
instNoMaxOrder
le_nfpFamily

Ordinal.IsNormal

Theorems

NameKindAssumesProvesValidatesDepends On
apply_le_nfp πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.nfp
β€”Ordinal.apply_le_nfp
apply_lt_nfp πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.nfp
β€”Ordinal.apply_lt_nfp
deriv_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Ordinal.derivβ€”Ordinal.deriv_fp
fp_iff_deriv πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Ordinal.derivβ€”Ordinal.fp_iff_deriv
le_iff_deriv πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.deriv
β€”Ordinal.le_iff_deriv
nfp_fp πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Ordinal.nfpβ€”Ordinal.nfp_fp
nfp_le_apply πŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.nfp
β€”Ordinal.nfp_le_apply

---

← Back to Index