Documentation Verification Report

NaturalOps

πŸ“ Source: Mathlib/SetTheory/Ordinal/NaturalOps.lean

Statistics

MetricCount
DefinitionsNatOrdinal, instAdd, instAddCommMonoid, instAddMonoidWithOne, instCommSemiring, instConditionallyCompleteLinearOrderBot, instMul, instSuccAddOrder, rec, toOrdinal, Β«term_β™―_Β», Β«term_⨳_Β», nadd, nmul, toNatOrdinal, instInhabitedNatOrdinal, instLinearOrderNatOrdinal, instNoMaxOrderNatOrdinal, instOneNatOrdinal, instOrderBotNatOrdinal, instSuccOrderNatOrdinal, instUncountableNatOrdinal, instWellFoundedRelationNatOrdinal, instZeroLEOneClassNatOrdinal, instZeroNatOrdinal
25
Theoremsadd_le_iff, bot_eq_zero, induction, instAddLeftMono, instAddLeftReflectLE, instAddLeftStrictMono, instCharZero, instIsOrderedCancelAddMonoid, instIsOrderedMonoid, instIsOrderedRing, instNeZeroOne, instWellFoundedLT, lt_add_iff, lt_mul_iff, lt_one_iff_zero, lt_wf, mul_add_lt, mul_le_iff, nmul_nadd_le, not_lt_zero, small_Icc, small_Ico, small_Iic, small_Iio, small_Ioc, small_Ioo, succ_def, toOrdinal_eq_one, toOrdinal_eq_zero, toOrdinal_max, toOrdinal_min, toOrdinal_natCast, toOrdinal_one, toOrdinal_symm_eq, toOrdinal_toNatOrdinal, toOrdinal_zero, zero_le, add_le_nadd, add_one_nmul, le_nadd_left, le_nadd_right, le_nadd_self, le_of_nadd_le_nadd_left, le_of_nadd_le_nadd_right, le_self_nadd, lt_nadd_iff, lt_nmul_iff, lt_nmul_iff₃, lt_of_nadd_lt_nadd_left, lt_of_nadd_lt_nadd_right, mul_le_nmul, nadd_assoc, nadd_comm, nadd_eq_add, nadd_le_iff, nadd_le_nadd, nadd_le_nadd_iff_left, nadd_le_nadd_iff_right, nadd_le_nadd_left, nadd_le_nadd_right, nadd_left_cancel, nadd_left_cancel_iff, nadd_left_comm, nadd_lt_nadd, nadd_lt_nadd_iff_left, nadd_lt_nadd_iff_right, nadd_lt_nadd_left, nadd_lt_nadd_of_le_of_lt, nadd_lt_nadd_of_lt_of_le, nadd_lt_nadd_right, nadd_nat, nadd_nmul, nadd_one, nadd_one_nmul, nadd_right_cancel, nadd_right_cancel_iff, nadd_right_comm, nadd_succ, nadd_zero, nat_nadd, nmul_add_one, nmul_assoc, nmul_comm, nmul_eq_mul, nmul_le_iff, nmul_le_iff₃, nmul_le_nmul, nmul_le_nmul_left, nmul_le_nmul_right, nmul_lt_nmul_of_pos_left, nmul_lt_nmul_of_pos_right, nmul_nadd, nmul_nadd_le, nmul_nadd_le₃, nmul_nadd_lt, nmul_nadd_lt₃, nmul_nadd_one, nmul_one, nmul_succ, nmul_zero, one_nadd, one_nmul, succ_nadd, succ_nmul, toNatOrdinal_eq_one, toNatOrdinal_eq_zero, toNatOrdinal_max, toNatOrdinal_min, toNatOrdinal_natCast, toNatOrdinal_one, toNatOrdinal_symm_eq, toNatOrdinal_toOrdinal, toNatOrdinal_zero, zero_nadd, zero_nmul
115
Total140

NatOrdinal

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
10 mathmath: instAddLeftReflectLE, lt_mul_iff, mul_add_lt, nmul_nadd_le, add_le_iff, lt_add_iff, mul_le_iff, instAddLeftStrictMono, instAddLeftMono, Ordinal.nadd_eq_add
instAddCommMonoid πŸ“–CompOp
1 mathmath: instIsOrderedCancelAddMonoid
instAddMonoidWithOne πŸ“–CompOp
3 mathmath: toOrdinal_natCast, Ordinal.toNatOrdinal_natCast, instCharZero
instCommSemiring πŸ“–CompOp
2 mathmath: instIsOrderedMonoid, instIsOrderedRing
instConditionallyCompleteLinearOrderBot πŸ“–CompOp
24 mathmath: instAddLeftReflectLE, lt_mul_iff, toOrdinal_min, instIsOrderedMonoid, instIsOrderedRing, add_le_iff, succ_def, lt_add_iff, Ordinal.toNatOrdinal_min, lt_one_iff_zero, instIsOrderedCancelAddMonoid, toOrdinal_max, not_lt_zero, mul_le_iff, instAddLeftStrictMono, instAddLeftMono, zero_le, small_Ioc, small_Iio, small_Ico, small_Ioo, small_Icc, small_Iic, Ordinal.toNatOrdinal_max
instMul πŸ“–CompOp
5 mathmath: lt_mul_iff, mul_add_lt, nmul_nadd_le, mul_le_iff, Ordinal.nmul_eq_mul
instSuccAddOrder πŸ“–CompOpβ€”
rec πŸ“–CompOpβ€”
toOrdinal πŸ“–CompOp
14 mathmath: toOrdinal_min, succ_def, toOrdinal_max, toOrdinal_natCast, toOrdinal_eq_zero, toOrdinal_symm_eq, toOrdinal_one, toOrdinal_toNatOrdinal, toOrdinal_zero, Ordinal.toNatOrdinal_toOrdinal, toOrdinal_eq_one, Ordinal.nmul_eq_mul, Ordinal.toNatOrdinal_symm_eq, Ordinal.nadd_eq_add

Theorems

NameKindAssumesProvesValidatesDepends On
add_le_iff πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
Preorder.toLT
β€”Ordinal.nadd_le_iff
bot_eq_zero πŸ“–mathematicalβ€”Bot.bot
NatOrdinal
OrderBot.toBot
Preorder.toLE
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
instOrderBotNatOrdinal
instZeroNatOrdinal
β€”β€”
induction πŸ“–β€”β€”β€”β€”Ordinal.induction
instAddLeftMono πŸ“–mathematicalβ€”AddLeftMono
NatOrdinal
instAdd
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.nadd_le_nadd_left
instAddLeftReflectLE πŸ“–mathematicalβ€”AddLeftReflectLE
NatOrdinal
instAdd
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”LE.le.not_gt
add_lt_add_right
instAddLeftStrictMono
instAddLeftStrictMono πŸ“–mathematicalβ€”AddLeftStrictMono
NatOrdinal
instAdd
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.nadd_lt_nadd_left
instCharZero πŸ“–mathematicalβ€”CharZero
NatOrdinal
instAddMonoidWithOne
β€”toOrdinal_natCast
Ordinal.instCharZero
instIsOrderedCancelAddMonoid πŸ“–mathematicalβ€”IsOrderedCancelAddMonoid
NatOrdinal
instAddCommMonoid
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”add_le_add_left
covariant_swap_add_of_covariant_add
instAddLeftMono
le_of_add_le_add_left
instAddLeftReflectLE
instIsOrderedMonoid πŸ“–mathematicalβ€”IsOrderedMonoid
NatOrdinal
CommSemiring.toCommMonoid
instCommSemiring
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.nmul_le_nmul_left
Ordinal.nmul_le_nmul_right
instIsOrderedRing πŸ“–mathematicalβ€”IsOrderedRing
NatOrdinal
CommSemiring.toSemiring
instCommSemiring
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
instIsOrderedCancelAddMonoid
MulLeftMono.toPosMulMono
IsOrderedMonoid.toMulLeftMono
instIsOrderedMonoid
MulRightMono.toMulPosMono
covariant_swap_mul_of_covariant_mul
instNeZeroOne πŸ“–mathematicalβ€”NatOrdinal
instZeroNatOrdinal
instOneNatOrdinal
β€”Ordinal.instNeZeroOne
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
NatOrdinal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
β€”Ordinal.wellFoundedLT
lt_add_iff πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
Preorder.toLE
β€”Ordinal.lt_nadd_iff
lt_mul_iff πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instMul
Preorder.toLE
instAdd
β€”Ordinal.lt_nmul_iff
lt_one_iff_zero πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instOneNatOrdinal
instZeroNatOrdinal
β€”Ordinal.lt_one_iff_zero
lt_wf πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
β€”Ordinal.lt_wf
mul_add_lt πŸ“–mathematicalNatOrdinal
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
instMul
β€”Ordinal.nmul_nadd_lt
mul_le_iff πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instMul
Preorder.toLT
instAdd
β€”Ordinal.nmul_le_iff
nmul_nadd_le πŸ“–mathematicalNatOrdinal
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instAdd
instMul
β€”Ordinal.nmul_nadd_le
not_lt_zero πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNatOrdinal
β€”not_lt_zero
Ordinal.canonicallyOrderedAdd
small_Icc πŸ“–mathematicalβ€”Small
Set.Elem
NatOrdinal
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Icc
small_Ico πŸ“–mathematicalβ€”Small
Set.Elem
NatOrdinal
Set.Ico
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Ico
small_Iic πŸ“–mathematicalβ€”Small
Set.Elem
NatOrdinal
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Iic
small_Iio πŸ“–mathematicalβ€”Small
Set.Elem
NatOrdinal
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Iio
small_Ioc πŸ“–mathematicalβ€”Small
Set.Elem
NatOrdinal
Set.Ioc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Ioc
small_Ioo πŸ“–mathematicalβ€”Small
Set.Elem
NatOrdinal
Set.Ioo
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”Ordinal.small_Ioo
succ_def πŸ“–mathematicalβ€”Order.succ
NatOrdinal
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instSuccOrderNatOrdinal
DFunLike.coe
OrderIso
Ordinal
Preorder.toLE
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
Ordinal.toNatOrdinal
Ordinal.add
toOrdinal
Ordinal.one
β€”β€”
toOrdinal_eq_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
Ordinal.one
instOneNatOrdinal
β€”β€”
toOrdinal_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
Ordinal.zero
instZeroNatOrdinal
β€”β€”
toOrdinal_max πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Ordinal.instConditionallyCompleteLinearOrderBot
β€”β€”
toOrdinal_min πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
SemilatticeInf.toMin
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Ordinal.instConditionallyCompleteLinearOrderBot
β€”β€”
toOrdinal_natCast πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
AddMonoidWithOne.toNatCast
instAddMonoidWithOne
Ordinal.addMonoidWithOne
β€”Ordinal.nadd_one
toOrdinal_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
instOneNatOrdinal
Ordinal.one
β€”β€”
toOrdinal_symm_eq πŸ“–mathematicalβ€”OrderIso.symm
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
toOrdinal
Ordinal.toNatOrdinal
β€”β€”
toOrdinal_toNatOrdinal πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
Ordinal.toNatOrdinal
toOrdinal
β€”β€”
toOrdinal_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
Ordinal.partialOrder
instFunLikeOrderIso
toOrdinal
instZeroNatOrdinal
Ordinal.zero
β€”β€”
zero_le πŸ“–mathematicalβ€”NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNatOrdinal
β€”zero_le
Ordinal.canonicallyOrderedAdd

NaturalOps

Definitions

NameCategoryTheorems
Β«term_β™―_Β» πŸ“–CompOpβ€”
Β«term_⨳_Β» πŸ“–CompOpβ€”

Ordinal

Definitions

NameCategoryTheorems
nadd πŸ“–CompOp
56 mathmath: succ_nmul, zero_nadd, SetTheory.Game.birthday_add_le, nmul_le_iff₃, SetTheory.PGame.birthday_add, nadd_le_nadd, nadd_one_nmul, SetTheory.Game.birthday_sub_le, nmul_add_one, nadd_le_nadd_iff_right, nat_nadd, nmul_nadd_one, nadd_le_nadd_iff_left, SetTheory.PGame.birthday_sub, le_nadd_self, nmul_succ, nmul_nadd_le, nadd_left_comm, nadd_assoc, lt_nmul_iff₃, lt_nmul_iff, le_self_nadd, nmul_nadd_le₃, nadd_right_cancel_iff, nadd_lt_nadd_of_le_of_lt, le_nadd_left, nadd_le_iff, add_le_nadd, one_nadd, nmul_nadd, nadd_comm, nadd_lt_nadd_right, nadd_left_cancel_iff, nadd_nat, nadd_right_comm, nadd_le_nadd_right, nadd_succ, nmul_nadd_lt, nadd_nmul, le_nadd_right, nadd_zero, nadd_lt_nadd_left, nmul_nadd_lt₃, toPGame_nadd, nadd_lt_nadd_iff_right, nadd_lt_nadd_of_lt_of_le, nmul_le_iff, lt_nadd_iff, succ_nadd, nadd_one, toGame_nadd, nadd_le_nadd_left, add_one_nmul, nadd_lt_nadd_iff_left, nadd_eq_add, nadd_lt_nadd
nmul πŸ“–CompOp
31 mathmath: succ_nmul, nmul_le_iff₃, one_nmul, mul_le_nmul, nadd_one_nmul, nmul_add_one, nmul_comm, toPGame_nmul, nmul_lt_nmul_of_pos_right, nmul_nadd_one, nmul_succ, nmul_nadd_le, lt_nmul_iff₃, lt_nmul_iff, nmul_nadd_le₃, nmul_lt_nmul_of_pos_left, nmul_zero, nmul_nadd, zero_nmul, toGame_nmul, nmul_assoc, nmul_one, nmul_nadd_lt, nadd_nmul, nmul_nadd_lt₃, nmul_le_nmul, nmul_le_nmul_right, nmul_le_iff, nmul_eq_mul, add_one_nmul, nmul_le_nmul_left
toNatOrdinal πŸ“–CompOp
14 mathmath: toNatOrdinal_eq_one, NatOrdinal.succ_def, toNatOrdinal_min, toNatOrdinal_one, toNatOrdinal_zero, toNatOrdinal_eq_zero, toNatOrdinal_natCast, NatOrdinal.toOrdinal_symm_eq, NatOrdinal.toOrdinal_toNatOrdinal, toNatOrdinal_toOrdinal, nmul_eq_mul, toNatOrdinal_max, toNatOrdinal_symm_eq, nadd_eq_add

Theorems

NameKindAssumesProvesValidatesDepends On
add_le_nadd πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
add
nadd
β€”add_zero
nadd_zero
add_succ
nadd_succ
Order.succ_le_succ_iff
instNoMaxOrder
Order.IsNormal.apply_of_isSuccLimit
isNormal_add_right
iSup_le_iff
small_Iio
LE.le.trans
nadd_le_nadd_left
LT.lt.le
add_one_nmul πŸ“–mathematicalβ€”nmul
Ordinal
add
one
nadd
β€”succ_nmul
le_nadd_left πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
naddβ€”LE.le.trans
le_nadd_self
nadd_le_nadd_left
le_nadd_right πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
naddβ€”LE.le.trans
le_self_nadd
nadd_le_nadd_right
le_nadd_self πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
β€”zero_nadd
nadd_le_nadd_right
zero_le
canonicallyOrderedAdd
le_of_nadd_le_nadd_left πŸ“–β€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
β€”β€”le_of_add_le_add_left
NatOrdinal.instAddLeftReflectLE
le_of_nadd_le_nadd_right πŸ“–β€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
β€”β€”le_of_add_le_add_right
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
NatOrdinal.instAddLeftMono
le_self_nadd πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
β€”nadd_zero
nadd_le_nadd_left
zero_le
canonicallyOrderedAdd
lt_nadd_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
Preorder.toLE
β€”nadd.eq_1
small_Iio
instNoMaxOrder
lt_nmul_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nmul
Preorder.toLE
nadd
β€”notMem_of_lt_csInf
nmul.eq_1
bot_le
LE.le.trans_lt
nmul_nadd_lt
nadd_lt_nadd_iff_right
lt_nmul_iff₃ πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nmul
Preorder.toLE
nadd
β€”lt_nmul_iff
nadd_le_nadd
nmul_nadd_le
LT.lt.le
nadd_assoc
nadd_left_comm
nadd_le_nadd_iff_left
nadd_nmul
LE.le.trans_lt
nmul_nadd_lt₃
nadd_lt_nadd_iff_right
lt_of_nadd_lt_nadd_left πŸ“–β€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
β€”β€”lt_of_add_lt_add_left
contravariant_lt_of_covariant_le
NatOrdinal.instAddLeftMono
lt_of_nadd_lt_nadd_right πŸ“–β€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
β€”β€”lt_of_add_lt_add_right
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
NatOrdinal.instAddLeftMono
mul_le_nmul πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
nmul
β€”MulZeroClass.mul_zero
nmul_zero
mul_succ
nmul_succ
LE.le.trans
add_le_nadd
nadd_le_nadd_right
eq_zero_or_pos
canonicallyOrderedAdd
MulZeroClass.zero_mul
zero_nmul
Order.IsNormal.apply_of_isSuccLimit
isNormal_mul_right
iSup_le_iff
small_Iio
le_imp_le_of_le_of_le
le_refl
nmul_le_nmul
le_of_lt
nadd_assoc πŸ“–mathematicalβ€”naddβ€”β€”
nadd_comm πŸ“–mathematicalβ€”naddβ€”β€”
nadd_eq_add πŸ“–mathematicalβ€”nadd
DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
partialOrder
instFunLikeOrderIso
NatOrdinal.toOrdinal
NatOrdinal.instAdd
toNatOrdinal
β€”β€”
nadd_le_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
Preorder.toLT
β€”not_lt
lt_nadd_iff
nadd_le_nadd πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
naddβ€”add_le_add
NatOrdinal.instAddLeftMono
covariant_swap_add_of_covariant_add
nadd_le_nadd_iff_left πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
β€”add_le_add_iff_left
NatOrdinal.instAddLeftMono
NatOrdinal.instAddLeftReflectLE
nadd_le_nadd_iff_right πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
β€”add_le_add_iff_right
covariant_swap_add_of_covariant_add
NatOrdinal.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
nadd_le_nadd_left πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
naddβ€”lt_or_eq_of_le
LT.lt.le
nadd_lt_nadd_left
le_rfl
nadd_le_nadd_right πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
naddβ€”lt_or_eq_of_le
LT.lt.le
nadd_lt_nadd_right
le_rfl
nadd_left_cancel πŸ“–β€”naddβ€”β€”add_left_cancel
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
nadd_left_cancel_iff πŸ“–mathematicalβ€”naddβ€”add_left_cancel_iff
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
nadd_left_comm πŸ“–mathematicalβ€”naddβ€”add_left_comm
nadd_lt_nadd πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
naddβ€”add_lt_add
NatOrdinal.instAddLeftStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
covariant_swap_add_of_covariant_add
NatOrdinal.instAddLeftMono
nadd_lt_nadd_iff_left πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
β€”add_lt_add_iff_left
NatOrdinal.instAddLeftStrictMono
contravariant_lt_of_covariant_le
NatOrdinal.instAddLeftMono
nadd_lt_nadd_iff_right πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
β€”add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
covariant_swap_add_of_covariant_add
NatOrdinal.instAddLeftMono
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
nadd_lt_nadd_left πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
naddβ€”lt_nadd_iff
le_rfl
nadd_lt_nadd_of_le_of_lt πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Preorder.toLT
naddβ€”add_lt_add_of_le_of_lt
NatOrdinal.instAddLeftStrictMono
covariant_swap_add_of_covariant_add
NatOrdinal.instAddLeftMono
nadd_lt_nadd_of_lt_of_le πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Preorder.toLE
naddβ€”add_lt_add_of_lt_of_le
NatOrdinal.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
covariant_swap_add_of_covariant_add
nadd_lt_nadd_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
naddβ€”lt_nadd_iff
le_rfl
nadd_nat πŸ“–mathematicalβ€”nadd
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
add
β€”Nat.cast_zero
nadd_zero
add_zero
Nat.cast_succ
add_one_eq_succ
nadd_succ
add_succ
nadd_nmul πŸ“–mathematicalβ€”nmul
nadd
β€”nmul_comm
nmul_nadd
nadd_one πŸ“–mathematicalβ€”nadd
Ordinal
one
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”nadd.eq_1
ciSup_unique
zero_lt_one'
instZeroLEOneClass
instNeZeroOne
Iio_one_default_eq
nadd_zero
max_eq_right_iff
iSup_le_iff
small_Iio
Order.succ_le_succ_iff
instNoMaxOrder
Order.succ_le_iff
nadd_one_nmul πŸ“–mathematicalβ€”nmul
nadd
Ordinal
one
β€”add_one_mul
Distrib.rightDistribClass
nadd_right_cancel πŸ“–β€”naddβ€”β€”add_right_cancel
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
nadd_right_cancel_iff πŸ“–mathematicalβ€”naddβ€”add_right_cancel_iff
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
NatOrdinal.instIsOrderedCancelAddMonoid
nadd_right_comm πŸ“–mathematicalβ€”naddβ€”add_right_comm
nadd_succ πŸ“–mathematicalβ€”nadd
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”nadd_one
nadd_assoc
nadd_zero πŸ“–mathematicalβ€”nadd
Ordinal
zero
β€”nadd.eq_1
ciSup_of_empty
instIsEmptyIioZero
sup_bot_eq
iSup_succ
nat_nadd πŸ“–mathematicalβ€”nadd
Ordinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
add
β€”nadd_comm
nadd_nat
nmul_add_one πŸ“–mathematicalβ€”nmul
Ordinal
add
one
nadd
β€”nmul_succ
nmul_assoc πŸ“–mathematicalβ€”nmulβ€”β€”
nmul_comm πŸ“–mathematicalβ€”nmulβ€”β€”
nmul_eq_mul πŸ“–mathematicalβ€”nmul
DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
partialOrder
instFunLikeOrderIso
NatOrdinal.toOrdinal
NatOrdinal.instMul
toNatOrdinal
β€”β€”
nmul_le_iff πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nmul
Preorder.toLT
nadd
β€”not_iff_not
nmul_le_iff₃ πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nmul
Preorder.toLT
nadd
β€”Iff.not
lt_nmul_iff₃
nmul_le_nmul πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nmulβ€”LE.le.trans
nmul_le_nmul_left
nmul_le_nmul_right
nmul_le_nmul_left πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nmulβ€”nmul_comm
nmul_le_nmul_right
nmul_le_nmul_right πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nmulβ€”lt_or_eq_of_le
eq_zero_or_pos
canonicallyOrderedAdd
LT.lt.le
nmul_lt_nmul_of_pos_left
zero_nmul
nmul_lt_nmul_of_pos_left πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
nmulβ€”lt_nmul_iff
zero_nmul
nadd_zero
zero_nadd
nmul_lt_nmul_of_pos_right πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
nmulβ€”lt_nmul_iff
nmul_zero
nadd_zero
nmul_nadd πŸ“–mathematicalβ€”nmul
nadd
β€”β€”
nmul_nadd_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
nmul
β€”lt_or_eq_of_le
LT.lt.le
nmul_nadd_lt
nadd_comm
le_refl
le_rfl
nmul_nadd_le₃ πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
nadd
nmul
β€”nadd_nmul
nmul_nadd_le
nmul_nadd_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
nmul
β€”nmul.eq_1
csInf_mem
wellFoundedLT
nmul_nadd_lt₃ πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
nadd
nmul
β€”nadd_nmul
nmul_nadd_lt
nmul_nadd_one πŸ“–mathematicalβ€”nmul
nadd
Ordinal
one
β€”mul_add_one
Distrib.leftDistribClass
nmul_one πŸ“–mathematicalβ€”nmul
Ordinal
one
β€”nmul.eq_1
Set.ext
le_of_forall_lt
nmul_zero
nadd_zero
LT.lt.trans_le
csInf_Ici
nmul_succ πŸ“–mathematicalβ€”nmul
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
nadd
β€”nadd_one
nmul_nadd_one
nmul_zero πŸ“–mathematicalβ€”nmul
Ordinal
zero
β€”canonicallyOrderedAdd
zero_nadd
instIsEmptyFalse
one_nadd πŸ“–mathematicalβ€”nadd
Ordinal
one
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”nadd_comm
nadd_one
one_nmul πŸ“–mathematicalβ€”nmul
Ordinal
one
β€”nmul_comm
nmul_one
succ_nadd πŸ“–mathematicalβ€”nadd
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
β€”one_nadd
nadd_assoc
succ_nmul πŸ“–mathematicalβ€”nmul
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
nadd
β€”nadd_one
nadd_one_nmul
toNatOrdinal_eq_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
instOneNatOrdinal
one
β€”β€”
toNatOrdinal_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
instZeroNatOrdinal
zero
β€”β€”
toNatOrdinal_max πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
NatOrdinal.instConditionallyCompleteLinearOrderBot
β€”β€”
toNatOrdinal_min πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
SemilatticeInf.toMin
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
NatOrdinal.instConditionallyCompleteLinearOrderBot
β€”β€”
toNatOrdinal_natCast πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
AddMonoidWithOne.toNatCast
addMonoidWithOne
NatOrdinal.instAddMonoidWithOne
β€”NatOrdinal.toOrdinal_natCast
toNatOrdinal_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
one
instOneNatOrdinal
β€”β€”
toNatOrdinal_symm_eq πŸ“–mathematicalβ€”OrderIso.symm
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
toNatOrdinal
NatOrdinal.toOrdinal
β€”β€”
toNatOrdinal_toOrdinal πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NatOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
partialOrder
instFunLikeOrderIso
NatOrdinal.toOrdinal
toNatOrdinal
β€”β€”
toNatOrdinal_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ordinal
NatOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNatOrdinal
instFunLikeOrderIso
toNatOrdinal
zero
instZeroNatOrdinal
β€”β€”
zero_nadd πŸ“–mathematicalβ€”nadd
Ordinal
zero
β€”nadd_comm
nadd_zero
zero_nmul πŸ“–mathematicalβ€”nmul
Ordinal
zero
β€”nmul_comm
nmul_zero

(root)

Definitions

NameCategoryTheorems
NatOrdinal πŸ“–CompOp
45 mathmath: NatOrdinal.instAddLeftReflectLE, NatOrdinal.lt_mul_iff, Ordinal.toNatOrdinal_eq_one, NatOrdinal.toOrdinal_min, NatOrdinal.instIsOrderedMonoid, NatOrdinal.instIsOrderedRing, NatOrdinal.add_le_iff, NatOrdinal.succ_def, NatOrdinal.lt_add_iff, NatOrdinal.bot_eq_zero, Ordinal.toNatOrdinal_min, NatOrdinal.lt_one_iff_zero, NatOrdinal.instIsOrderedCancelAddMonoid, NatOrdinal.toOrdinal_max, NatOrdinal.not_lt_zero, Ordinal.toNatOrdinal_one, NatOrdinal.instNeZeroOne, NatOrdinal.mul_le_iff, NatOrdinal.toOrdinal_natCast, NatOrdinal.instAddLeftStrictMono, NatOrdinal.instAddLeftMono, Ordinal.toNatOrdinal_zero, NatOrdinal.toOrdinal_eq_zero, Ordinal.toNatOrdinal_eq_zero, NatOrdinal.zero_le, Ordinal.toNatOrdinal_natCast, NatOrdinal.toOrdinal_symm_eq, NatOrdinal.toOrdinal_one, NatOrdinal.toOrdinal_toNatOrdinal, NatOrdinal.instWellFoundedLT, NatOrdinal.small_Ioc, NatOrdinal.small_Iio, NatOrdinal.small_Ico, NatOrdinal.small_Ioo, NatOrdinal.toOrdinal_zero, NatOrdinal.small_Icc, Ordinal.toNatOrdinal_toOrdinal, NatOrdinal.toOrdinal_eq_one, Ordinal.nmul_eq_mul, NatOrdinal.small_Iic, NatOrdinal.instCharZero, Ordinal.toNatOrdinal_max, Ordinal.toNatOrdinal_symm_eq, Ordinal.nadd_eq_add, NatOrdinal.lt_wf
instInhabitedNatOrdinal πŸ“–CompOpβ€”
instLinearOrderNatOrdinal πŸ“–CompOp
23 mathmath: Ordinal.toNatOrdinal_eq_one, NatOrdinal.toOrdinal_min, NatOrdinal.succ_def, Ordinal.toNatOrdinal_min, NatOrdinal.toOrdinal_max, Ordinal.toNatOrdinal_one, NatOrdinal.toOrdinal_natCast, Ordinal.toNatOrdinal_zero, NatOrdinal.toOrdinal_eq_zero, Ordinal.toNatOrdinal_eq_zero, Ordinal.toNatOrdinal_natCast, NatOrdinal.toOrdinal_symm_eq, NatOrdinal.toOrdinal_one, NatOrdinal.toOrdinal_toNatOrdinal, NatOrdinal.instWellFoundedLT, NatOrdinal.toOrdinal_zero, Ordinal.toNatOrdinal_toOrdinal, NatOrdinal.toOrdinal_eq_one, Ordinal.nmul_eq_mul, Ordinal.toNatOrdinal_max, Ordinal.toNatOrdinal_symm_eq, Ordinal.nadd_eq_add, NatOrdinal.lt_wf
instNoMaxOrderNatOrdinal πŸ“–CompOpβ€”
instOneNatOrdinal πŸ“–CompOp
6 mathmath: Ordinal.toNatOrdinal_eq_one, NatOrdinal.lt_one_iff_zero, Ordinal.toNatOrdinal_one, NatOrdinal.instNeZeroOne, NatOrdinal.toOrdinal_one, NatOrdinal.toOrdinal_eq_one
instOrderBotNatOrdinal πŸ“–CompOp
1 mathmath: NatOrdinal.bot_eq_zero
instSuccOrderNatOrdinal πŸ“–CompOp
1 mathmath: NatOrdinal.succ_def
instUncountableNatOrdinal πŸ“–CompOpβ€”
instWellFoundedRelationNatOrdinal πŸ“–CompOpβ€”
instZeroLEOneClassNatOrdinal πŸ“–CompOpβ€”
instZeroNatOrdinal πŸ“–CompOp
9 mathmath: NatOrdinal.bot_eq_zero, NatOrdinal.lt_one_iff_zero, NatOrdinal.not_lt_zero, NatOrdinal.instNeZeroOne, Ordinal.toNatOrdinal_zero, NatOrdinal.toOrdinal_eq_zero, Ordinal.toNatOrdinal_eq_zero, NatOrdinal.zero_le, NatOrdinal.toOrdinal_zero

---

← Back to Index